Automatic segmentation of intravascular ultrasound images: A texture-based approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-11

AUTHORS

Aleksandra Mojsilović, Miodrag Popović, Nenad Amodaj, Rade Babić, Miodrag Ostojić

ABSTRACT

Extraction of blood vessel boundaries from intravascular ultrasound images is essential in the quantitative analysis of cardiovascular functions. In this study, we are presenting a completely automated procedure for determining blood vessel borders. This approach uses textural operators to separate different tissue regions and morphological processing to refine extracted contours. The method was tested in a set of 29 intravascular ultrasound images obtained in vivo. To assess the performance of the method, we have compared the automatically processed images with the manual tracings, using three different criteria: correlation coefficient, match ratio, and relative error of computed shape parameters. In both contour detection and shape parameters estimation, the proposed method yielded consistently good results. Due to its robustness and accuracy, this approach is appropriate for clinical use, whereas computational efficiency of the method facilitates low-cost implementation. More... »

PAGES

1059-1071

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02684141

DOI

http://dx.doi.org/10.1007/bf02684141

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037005106

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9395051


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Echocardiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Faculty of Electrical Engineering, University of Belgrade, Bulevar revolucij 73, 11000, Belgrade, Yugoslavia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mojsilovi\u0107", 
        "givenName": "Aleksandra", 
        "id": "sg:person.016026424725.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026424725.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Faculty of Electrical Engineering, University of Belgrade, Bulevar revolucij 73, 11000, Belgrade, Yugoslavia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popovi\u0107", 
        "givenName": "Miodrag", 
        "id": "sg:person.0677344403.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677344403.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "TehnoCAD, Belgrade, Yugoslavia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amodaj", 
        "givenName": "Nenad", 
        "id": "sg:person.011170403660.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011170403660.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Belgrade", 
          "id": "https://www.grid.ac/institutes/grid.7149.b", 
          "name": [
            "Institute of Cardiovascular Diseases, University of Belgrade, Belgrade, Yugoslavia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Babi\u0107", 
        "givenName": "Rade", 
        "id": "sg:person.0657046660.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657046660.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Belgrade", 
          "id": "https://www.grid.ac/institutes/grid.7149.b", 
          "name": [
            "Institute of Cardiovascular Diseases, University of Belgrade, Belgrade, Yugoslavia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ostoji\u0107", 
        "givenName": "Miodrag", 
        "id": "sg:person.01271463253.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271463253.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/01.cir.84.5.1938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006948680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.174406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010980051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-189x(86)90002-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010997537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0735-1097(89)90471-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014795085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-8703(05)80190-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023880767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.89.6.2570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024712743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0146-664x(75)80008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027475370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.85.6.2305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029606545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.84.5.2190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039296314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.83.3.913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041809828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-8703(92)90819-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043126785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.86.1.154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043608568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.192463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061155760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.141636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.476113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.242353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1979.11328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061444219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1984.4767591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1987.4767941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1976.5408777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1984.6313341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061793690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.1995.537526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094878278"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-11", 
    "datePublishedReg": "1997-11-01", 
    "description": "Extraction of blood vessel boundaries from intravascular ultrasound images is essential in the quantitative analysis of cardiovascular functions. In this study, we are presenting a completely automated procedure for determining blood vessel borders. This approach uses textural operators to separate different tissue regions and morphological processing to refine extracted contours. The method was tested in a set of 29 intravascular ultrasound images obtained in vivo. To assess the performance of the method, we have compared the automatically processed images with the manual tracings, using three different criteria: correlation coefficient, match ratio, and relative error of computed shape parameters. In both contour detection and shape parameters estimation, the proposed method yielded consistently good results. Due to its robustness and accuracy, this approach is appropriate for clinical use, whereas computational efficiency of the method facilitates low-cost implementation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02684141", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Automatic segmentation of intravascular ultrasound images: A texture-based approach", 
    "pagination": "1059-1071", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b04792c57162ac517cc381bc97eb4cecc189b0063c27b0f8c25bca929c690be9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9395051"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02684141"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037005106"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02684141", 
      "https://app.dimensions.ai/details/publication/pub.1037005106"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46757_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02684141"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02684141'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02684141'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02684141'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02684141'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      57 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02684141 schema:about N1449f08639494c6bb9c401005435dcf9
2 N2a6e820131c84428a877aacf3a6bf2c0
3 N2c7a70d0acfc4e85b1bb927641630db6
4 N2d6b058fe13c45028ec49d4b0b64ace7
5 N9a9743eb8ecb4d5e8c2b3372c3600d52
6 Nff4daeaafc694e72885e3bab3ad89e08
7 anzsrc-for:08
8 anzsrc-for:0801
9 schema:author Nbfbd84294703430da69195c3c671809c
10 schema:citation https://doi.org/10.1016/0002-8703(92)90819-h
11 https://doi.org/10.1016/0734-189x(86)90002-2
12 https://doi.org/10.1016/0735-1097(89)90471-3
13 https://doi.org/10.1016/s0002-8703(05)80190-5
14 https://doi.org/10.1016/s0146-664x(75)80008-6
15 https://doi.org/10.1109/34.192463
16 https://doi.org/10.1109/42.141636
17 https://doi.org/10.1109/42.476113
18 https://doi.org/10.1109/83.242353
19 https://doi.org/10.1109/icip.1995.537526
20 https://doi.org/10.1109/proc.1979.11328
21 https://doi.org/10.1109/tpami.1984.4767591
22 https://doi.org/10.1109/tpami.1987.4767941
23 https://doi.org/10.1109/tsmc.1976.5408777
24 https://doi.org/10.1109/tsmc.1984.6313341
25 https://doi.org/10.1117/12.174406
26 https://doi.org/10.1161/01.cir.83.3.913
27 https://doi.org/10.1161/01.cir.84.5.1938
28 https://doi.org/10.1161/01.cir.84.5.2190
29 https://doi.org/10.1161/01.cir.85.6.2305
30 https://doi.org/10.1161/01.cir.86.1.154
31 https://doi.org/10.1161/01.cir.89.6.2570
32 schema:datePublished 1997-11
33 schema:datePublishedReg 1997-11-01
34 schema:description Extraction of blood vessel boundaries from intravascular ultrasound images is essential in the quantitative analysis of cardiovascular functions. In this study, we are presenting a completely automated procedure for determining blood vessel borders. This approach uses textural operators to separate different tissue regions and morphological processing to refine extracted contours. The method was tested in a set of 29 intravascular ultrasound images obtained in vivo. To assess the performance of the method, we have compared the automatically processed images with the manual tracings, using three different criteria: correlation coefficient, match ratio, and relative error of computed shape parameters. In both contour detection and shape parameters estimation, the proposed method yielded consistently good results. Due to its robustness and accuracy, this approach is appropriate for clinical use, whereas computational efficiency of the method facilitates low-cost implementation.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N5ad7522f414a48009511e2ce5eef3649
39 Na95a91c54d5d4f119439f5ab5b1c38fe
40 sg:journal.1087247
41 schema:name Automatic segmentation of intravascular ultrasound images: A texture-based approach
42 schema:pagination 1059-1071
43 schema:productId N23082535ede44390bc1bf7f9d2260ac0
44 N3c235201b4e24b8b92ebc5f0eb7709ef
45 N4a85938e4cae4aaaa3820984b1469c5b
46 N6e48049febcb433db0f572d4a4b5ae64
47 N94678b1b32af452cbdf8b9b8cc5683e7
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037005106
49 https://doi.org/10.1007/bf02684141
50 schema:sdDatePublished 2019-04-11T13:31
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nc78baa3dcfaa4977a8b3973ff53dc3b5
53 schema:url http://link.springer.com/10.1007%2FBF02684141
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N1449f08639494c6bb9c401005435dcf9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Humans
59 rdf:type schema:DefinedTerm
60 N201d8986917a48149b2946ebe4f2d8fc schema:name TehnoCAD, Belgrade, Yugoslavia
61 rdf:type schema:Organization
62 N23082535ede44390bc1bf7f9d2260ac0 schema:name nlm_unique_id
63 schema:value 0361512
64 rdf:type schema:PropertyValue
65 N27dff99df4314894ad8c7a4308cb9963 schema:name Faculty of Electrical Engineering, University of Belgrade, Bulevar revolucij 73, 11000, Belgrade, Yugoslavia
66 rdf:type schema:Organization
67 N2a6e820131c84428a877aacf3a6bf2c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Echocardiography
69 rdf:type schema:DefinedTerm
70 N2c7a70d0acfc4e85b1bb927641630db6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Image Processing, Computer-Assisted
72 rdf:type schema:DefinedTerm
73 N2d6b058fe13c45028ec49d4b0b64ace7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Calibration
75 rdf:type schema:DefinedTerm
76 N3c235201b4e24b8b92ebc5f0eb7709ef schema:name pubmed_id
77 schema:value 9395051
78 rdf:type schema:PropertyValue
79 N428b68b18c2844259ffbb7d9cc62421f rdf:first sg:person.011170403660.81
80 rdf:rest Ncf58eb0dff4d40a6b569d0d92301ca0c
81 N4994208c189e42eba938663e8294130f schema:name Faculty of Electrical Engineering, University of Belgrade, Bulevar revolucij 73, 11000, Belgrade, Yugoslavia
82 rdf:type schema:Organization
83 N4a85938e4cae4aaaa3820984b1469c5b schema:name readcube_id
84 schema:value b04792c57162ac517cc381bc97eb4cecc189b0063c27b0f8c25bca929c690be9
85 rdf:type schema:PropertyValue
86 N5ad7522f414a48009511e2ce5eef3649 schema:volumeNumber 25
87 rdf:type schema:PublicationVolume
88 N6e48049febcb433db0f572d4a4b5ae64 schema:name doi
89 schema:value 10.1007/bf02684141
90 rdf:type schema:PropertyValue
91 N94678b1b32af452cbdf8b9b8cc5683e7 schema:name dimensions_id
92 schema:value pub.1037005106
93 rdf:type schema:PropertyValue
94 N9a9743eb8ecb4d5e8c2b3372c3600d52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Arteries
96 rdf:type schema:DefinedTerm
97 N9c9abb62a7d04e2b9ba1015c0d6ced51 rdf:first sg:person.0677344403.72
98 rdf:rest N428b68b18c2844259ffbb7d9cc62421f
99 Na95a91c54d5d4f119439f5ab5b1c38fe schema:issueNumber 6
100 rdf:type schema:PublicationIssue
101 Nbfbd84294703430da69195c3c671809c rdf:first sg:person.016026424725.29
102 rdf:rest N9c9abb62a7d04e2b9ba1015c0d6ced51
103 Nc78baa3dcfaa4977a8b3973ff53dc3b5 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Ncf58eb0dff4d40a6b569d0d92301ca0c rdf:first sg:person.0657046660.50
106 rdf:rest Ndb815f2e09d54ce685762db8aa968201
107 Ndb815f2e09d54ce685762db8aa968201 rdf:first sg:person.01271463253.53
108 rdf:rest rdf:nil
109 Nff4daeaafc694e72885e3bab3ad89e08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Coronary Artery Disease
111 rdf:type schema:DefinedTerm
112 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
113 schema:name Information and Computing Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
116 schema:name Artificial Intelligence and Image Processing
117 rdf:type schema:DefinedTerm
118 sg:journal.1087247 schema:issn 0145-3068
119 1573-9686
120 schema:name Annals of Biomedical Engineering
121 rdf:type schema:Periodical
122 sg:person.011170403660.81 schema:affiliation N201d8986917a48149b2946ebe4f2d8fc
123 schema:familyName Amodaj
124 schema:givenName Nenad
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011170403660.81
126 rdf:type schema:Person
127 sg:person.01271463253.53 schema:affiliation https://www.grid.ac/institutes/grid.7149.b
128 schema:familyName Ostojić
129 schema:givenName Miodrag
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271463253.53
131 rdf:type schema:Person
132 sg:person.016026424725.29 schema:affiliation N4994208c189e42eba938663e8294130f
133 schema:familyName Mojsilović
134 schema:givenName Aleksandra
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026424725.29
136 rdf:type schema:Person
137 sg:person.0657046660.50 schema:affiliation https://www.grid.ac/institutes/grid.7149.b
138 schema:familyName Babić
139 schema:givenName Rade
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657046660.50
141 rdf:type schema:Person
142 sg:person.0677344403.72 schema:affiliation N27dff99df4314894ad8c7a4308cb9963
143 schema:familyName Popović
144 schema:givenName Miodrag
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677344403.72
146 rdf:type schema:Person
147 https://doi.org/10.1016/0002-8703(92)90819-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1043126785
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0734-189x(86)90002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010997537
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0735-1097(89)90471-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014795085
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0002-8703(05)80190-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023880767
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0146-664x(75)80008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027475370
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/34.192463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155760
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/42.141636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170015
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/42.476113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170382
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/83.242353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239085
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/icip.1995.537526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094878278
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/proc.1979.11328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061444219
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tpami.1984.4767591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742085
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tpami.1987.4767941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742321
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tsmc.1976.5408777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792978
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tsmc.1984.6313341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061793690
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1117/12.174406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010980051
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1161/01.cir.83.3.913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041809828
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1161/01.cir.84.5.1938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006948680
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1161/01.cir.84.5.2190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039296314
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1161/01.cir.85.6.2305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029606545
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1161/01.cir.86.1.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043608568
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1161/01.cir.89.6.2570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024712743
190 rdf:type schema:CreativeWork
191 https://www.grid.ac/institutes/grid.7149.b schema:alternateName University of Belgrade
192 schema:name Institute of Cardiovascular Diseases, University of Belgrade, Belgrade, Yugoslavia
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...