Quasiclassical calculation of the fermi level and of the forbidden energy band narrowing in crystal semiconductors with heavy doping View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-05

AUTHORS

N. A. Poklonskii, A. I. Syaglo

ABSTRACT

In an effective-mass approximation it is shown that in a heavily doped slightly compensated crystal the narrowing of the band ΔEg>0 on complete ionization of the impurity is equal to the sum of the exchange interaction ΔEg(exc) of the majority charge carriers and of the energy of the correlation interaction ΔEg(cor) of a nonequilibrium minority charge carrier with a screening cloud of majority ones. When the mean-square fluctuation of the potential energy of an electron (hole) is much higher than the thermal energy, the approximation ΔEg/EB=1.3(NaB3/v)0.58+2.7(NaB3/v)0.23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt v $$ \end{document} is obtained, where v is the number of equivalent energy minima (valleys) at different values of the quasimomentum of the majority charge carriers,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$E_B ,a_B = {{4\pi \varepsilon \rlap{--} h^2 } \mathord{\left/ {\vphantom {{4\pi \varepsilon \rlap{--} h^2 } {me^2 }}} \right. \kern-\nulldelimiterspace} {me^2 }}$$ \end{document} are the Bohr energy and radius; ε is the dielectric permittivity of the crystal lattice; m is the effective mass of the state density in one valley; N is the concentration of the doping impurity. The values of ΔEg and of the high-energy edge of the interband radiating recombination calculated by the model suggested agree with the data on low-temperature photoluminescence of n-Si, p-Si, p-GaAs, and p-GaSb for 3·10−3 More... »

PAGES

380-386

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02675103

DOI

http://dx.doi.org/10.1007/bf02675103

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028298599


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Poklonskii", 
        "givenName": "N. A.", 
        "id": "sg:person.015656403561.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015656403561.19"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Syaglo", 
        "givenName": "A. I.", 
        "id": "sg:person.010146444315.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146444315.68"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997-05", 
    "datePublishedReg": "1997-05-01", 
    "description": "In an effective-mass approximation it is shown that in a heavily doped slightly compensated crystal the narrowing of the band \u0394Eg>0 on complete ionization of the impurity is equal to the sum of the exchange interaction \u0394Eg(exc) of the majority charge carriers and of the energy of the correlation interaction \u0394Eg(cor) of a nonequilibrium minority charge carrier with a screening cloud of majority ones. When the mean-square fluctuation of the potential energy of an electron (hole) is much higher than the thermal energy, the approximation \u0394Eg/EB=1.3(NaB3/v)0.58+2.7(NaB3/v)0.23\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\sqrt v $$\n\\end{document} is obtained, where v is the number of equivalent energy minima (valleys) at different values of the quasimomentum of the majority charge carriers,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$E_B ,a_B  = {{4\\pi \\varepsilon \\rlap{--} h^2 } \\mathord{\\left/ {\\vphantom {{4\\pi \\varepsilon \\rlap{--} h^2 } {me^2 }}} \\right. \\kern-\\nulldelimiterspace} {me^2 }}$$\n\\end{document} are the Bohr energy and radius; \u03b5 is the dielectric permittivity of the crystal lattice; m is the effective mass of the state density in one valley; N is the concentration of the doping impurity. The values of \u0394Eg and of the high-energy edge of the interband radiating recombination calculated by the model suggested agree with the data on low-temperature photoluminescence of n-Si, p-Si, p-GaAs, and p-GaSb for 3\u00b710\u22123
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02675103'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02675103'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02675103'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02675103'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      99 URIs      91 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02675103 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1706567badb04b2f8b08685bcee0c4a0
4 schema:datePublished 1997-05
5 schema:datePublishedReg 1997-05-01
6 schema:description In an effective-mass approximation it is shown that in a heavily doped slightly compensated crystal the narrowing of the band ΔEg>0 on complete ionization of the impurity is equal to the sum of the exchange interaction ΔEg(exc) of the majority charge carriers and of the energy of the correlation interaction ΔEg(cor) of a nonequilibrium minority charge carrier with a screening cloud of majority ones. When the mean-square fluctuation of the potential energy of an electron (hole) is much higher than the thermal energy, the approximation ΔEg/EB=1.3(NaB3/v)0.58+2.7(NaB3/v)0.23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt v $$ \end{document} is obtained, where v is the number of equivalent energy minima (valleys) at different values of the quasimomentum of the majority charge carriers,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$E_B ,a_B = {{4\pi \varepsilon \rlap{--} h^2 } \mathord{\left/ {\vphantom {{4\pi \varepsilon \rlap{--} h^2 } {me^2 }}} \right. \kern-\nulldelimiterspace} {me^2 }}$$ \end{document} are the Bohr energy and radius; ε is the dielectric permittivity of the crystal lattice; m is the effective mass of the state density in one valley; N is the concentration of the doping impurity. The values of ΔEg and of the high-energy edge of the interband radiating recombination calculated by the model suggested agree with the data on low-temperature photoluminescence of n-Si, p-Si, p-GaAs, and p-GaSb for 3·10−3<NaB3<2.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N174442b9e3f44f03b0cfe1d2119675c2
11 Nb0779bef38a844479aab63285bdcdf8f
12 sg:journal.1005931
13 schema:keywords Bohr energy
14 Fermi level
15 GaAs
16 GaSb
17 Si
18 Valley
19 approximation
20 approximation ΔEg/
21 band
22 calculations
23 carriers
24 charge
25 charge carriers
26 cloud
27 complete ionization
28 concentration
29 correlation interactions
30 crystal lattice
31 crystal semiconductors
32 crystals
33 data
34 density
35 dielectric permittivity
36 different values
37 doping
38 doping impurities
39 edge
40 effective mass
41 effective-mass approximation
42 electrons
43 energy
44 energy bands
45 energy minima
46 equivalent energy minima
47 exchange interaction
48 fluctuations
49 heavy doping
50 high-energy edge
51 impurities
52 interaction
53 interband
54 ionization
55 lattice
56 levels
57 low-temperature photoluminescence
58 majority charge
59 majority charge carriers
60 majority one
61 mass
62 mean-square fluctuations
63 minimum
64 minority charge carriers
65 model
66 narrowing
67 nonequilibrium minority charge carriers
68 number
69 one
70 permittivity
71 photoluminescence
72 potential energy
73 quasiclassical calculations
74 quasimomentum
75 radius
76 recombination
77 screening cloud
78 semiconductors
79 state density
80 sum
81 thermal energy
82 values
83 values of ΔEg
84 ΔEg
85 ΔEg/
86 schema:name Quasiclassical calculation of the fermi level and of the forbidden energy band narrowing in crystal semiconductors with heavy doping
87 schema:pagination 380-386
88 schema:productId N253944aa8321482e9eb709a94b85dece
89 N9aa8582bbacb4772b7236f75b1bdecb3
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028298599
91 https://doi.org/10.1007/bf02675103
92 schema:sdDatePublished 2021-11-01T18:02
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N34d29dd8483e4f84aca02bf71350a48f
95 schema:url https://doi.org/10.1007/bf02675103
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N1706567badb04b2f8b08685bcee0c4a0 rdf:first sg:person.015656403561.19
100 rdf:rest Nc4793087ff8843cfbc30a69508dc6bff
101 N174442b9e3f44f03b0cfe1d2119675c2 schema:volumeNumber 64
102 rdf:type schema:PublicationVolume
103 N253944aa8321482e9eb709a94b85dece schema:name doi
104 schema:value 10.1007/bf02675103
105 rdf:type schema:PropertyValue
106 N34d29dd8483e4f84aca02bf71350a48f schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N9aa8582bbacb4772b7236f75b1bdecb3 schema:name dimensions_id
109 schema:value pub.1028298599
110 rdf:type schema:PropertyValue
111 Nb0779bef38a844479aab63285bdcdf8f schema:issueNumber 3
112 rdf:type schema:PublicationIssue
113 Nc4793087ff8843cfbc30a69508dc6bff rdf:first sg:person.010146444315.68
114 rdf:rest rdf:nil
115 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
116 schema:name Engineering
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
119 schema:name Materials Engineering
120 rdf:type schema:DefinedTerm
121 sg:journal.1005931 schema:issn 0021-9037
122 1573-8647
123 schema:name Journal of Applied Spectroscopy
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.010146444315.68 schema:familyName Syaglo
127 schema:givenName A. I.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146444315.68
129 rdf:type schema:Person
130 sg:person.015656403561.19 schema:familyName Poklonskii
131 schema:givenName N. A.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015656403561.19
133 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...