On the rate of convergence and aymptotic expansions forU-statistics under alternatives View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-04

AUTHORS

V. E. Bening

ABSTRACT

In this paper, we consider asymptotic expansions and the rate of convergence for the distribution function of asymptotically efficient U-statistics under alternatives in the one-sample problem. Section 1 is an introduction. Section 2 contains the theorem concerning the rate of convergence for U-statistics; in Sec. 3, we formulate sets of sufficient conditions under which Edgeworth-type asymptotic expansions for U-statistics under alternatives will be constructed (see Theorem 2). Finally, these theorems are proved in Sec. 4. More... »

PAGES

1403-1407

References to SciGraph publications

Journal

TITLE

Journal of Mathematical Sciences

ISSUE

4

VOLUME

99

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02673715

DOI

http://dx.doi.org/10.1007/bf02673715

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046496856


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Department of Computational Mathematics and Cybernetics, Moscow State University, Vorob'yovy Gory, 119899, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bening", 
        "givenName": "V. E.", 
        "id": "sg:person.014065234443.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065234443.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02365360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015355766", 
          "https://doi.org/10.1007/bf02365360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02365360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015355766", 
          "https://doi.org/10.1007/bf02365360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02362693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023351609", 
          "https://doi.org/10.1007/bf02362693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02362693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023351609", 
          "https://doi.org/10.1007/bf02362693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029062513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02363223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053439012", 
          "https://doi.org/10.1007/bf02363223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02363223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053439012", 
          "https://doi.org/10.1007/bf02363223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1129059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062867745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176995897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064405361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176342609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176350170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409069"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-04", 
    "datePublishedReg": "2000-04-01", 
    "description": "In this paper, we consider asymptotic expansions and the rate of convergence for the distribution function of asymptotically efficient U-statistics under alternatives in the one-sample problem. Section 1 is an introduction. Section 2 contains the theorem concerning the rate of convergence for U-statistics; in Sec. 3, we formulate sets of sufficient conditions under which Edgeworth-type asymptotic expansions for U-statistics under alternatives will be constructed (see Theorem 2). Finally, these theorems are proved in Sec. 4.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02673715", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "99"
      }
    ], 
    "name": "On the rate of convergence and aymptotic expansions forU-statistics under alternatives", 
    "pagination": "1403-1407", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dd7e30dcb6522456bc27c5b92a8e8e03790c76fe128f9719689af21d73fbab42"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02673715"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046496856"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02673715", 
      "https://app.dimensions.ai/details/publication/pub.1046496856"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02673715"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02673715'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02673715'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02673715'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02673715'


 

This table displays all metadata directly associated to this object as RDF triples.

91 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02673715 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ncce13b047ea1473c84c06ba28b924eb9
4 schema:citation sg:pub.10.1007/bf02362693
5 sg:pub.10.1007/bf02363223
6 sg:pub.10.1007/bf02365360
7 https://doi.org/10.1137/1129059
8 https://doi.org/10.1214/aop/1176995897
9 https://doi.org/10.1214/aos/1176342609
10 https://doi.org/10.1214/aos/1176344132
11 https://doi.org/10.1214/aos/1176344955
12 https://doi.org/10.1214/aos/1176350170
13 schema:datePublished 2000-04
14 schema:datePublishedReg 2000-04-01
15 schema:description In this paper, we consider asymptotic expansions and the rate of convergence for the distribution function of asymptotically efficient U-statistics under alternatives in the one-sample problem. Section 1 is an introduction. Section 2 contains the theorem concerning the rate of convergence for U-statistics; in Sec. 3, we formulate sets of sufficient conditions under which Edgeworth-type asymptotic expansions for U-statistics under alternatives will be constructed (see Theorem 2). Finally, these theorems are proved in Sec. 4.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N1e93986c6e4146ad9cbfe91b2bacde0e
20 Ned4f1305ba8846f1a17d59d7f2025bcf
21 sg:journal.1136516
22 schema:name On the rate of convergence and aymptotic expansions forU-statistics under alternatives
23 schema:pagination 1403-1407
24 schema:productId N334517c6571a4a23ad687f7ee6adeae9
25 N3f544a6831ef419d93c9f7b510c50d16
26 Na7a683a9d949487fab511e91545d5281
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046496856
28 https://doi.org/10.1007/bf02673715
29 schema:sdDatePublished 2019-04-11T13:27
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N0262a0a29a4347e98c5785e03f8b05ae
32 schema:url http://link.springer.com/10.1007%2FBF02673715
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N0262a0a29a4347e98c5785e03f8b05ae schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N1e93986c6e4146ad9cbfe91b2bacde0e schema:volumeNumber 99
39 rdf:type schema:PublicationVolume
40 N334517c6571a4a23ad687f7ee6adeae9 schema:name doi
41 schema:value 10.1007/bf02673715
42 rdf:type schema:PropertyValue
43 N3f544a6831ef419d93c9f7b510c50d16 schema:name dimensions_id
44 schema:value pub.1046496856
45 rdf:type schema:PropertyValue
46 Na7a683a9d949487fab511e91545d5281 schema:name readcube_id
47 schema:value dd7e30dcb6522456bc27c5b92a8e8e03790c76fe128f9719689af21d73fbab42
48 rdf:type schema:PropertyValue
49 Ncce13b047ea1473c84c06ba28b924eb9 rdf:first sg:person.014065234443.39
50 rdf:rest rdf:nil
51 Ned4f1305ba8846f1a17d59d7f2025bcf schema:issueNumber 4
52 rdf:type schema:PublicationIssue
53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
54 schema:name Mathematical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
57 schema:name Statistics
58 rdf:type schema:DefinedTerm
59 sg:journal.1136516 schema:issn 1072-3374
60 1573-8795
61 schema:name Journal of Mathematical Sciences
62 rdf:type schema:Periodical
63 sg:person.014065234443.39 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
64 schema:familyName Bening
65 schema:givenName V. E.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065234443.39
67 rdf:type schema:Person
68 sg:pub.10.1007/bf02362693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023351609
69 https://doi.org/10.1007/bf02362693
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/bf02363223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053439012
72 https://doi.org/10.1007/bf02363223
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf02365360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015355766
75 https://doi.org/10.1007/bf02365360
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1137/1129059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062867745
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1214/aop/1176995897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405361
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1214/aos/1176342609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406884
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1214/aos/1176344132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029062513
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1214/aos/1176344955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407628
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1214/aos/1176350170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409069
88 rdf:type schema:CreativeWork
89 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
90 schema:name Department of Computational Mathematics and Cybernetics, Moscow State University, Vorob'yovy Gory, 119899, Moscow, Russia
91 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...