Heat flow model for surface melting and solidification of an alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-06

AUTHORS

J. A. Sekhar, S. Kou, R. Mehrabian

ABSTRACT

The heat flow model previously developed for a pure metal is extended to the solidification of an alloy over a range of temperatures. The eq11Ations are then applied to rapid surface melting and solidification of an alloy substrate. The substrate is subjected to a pulse of stationary high intensity heat flux over a circular region on its bounding surface. The finite difference form of the heat transfer eq11Ation is written in terMs of dimensionless nodal temperature and enthalpy in an oblate spheroidal coordinate system. A numerical solution technique is developed for an alloy which precipitates a eutectic at the end of solidification. Generalized solutions are presented for an Al-4.5 wt pct Cu alloy subjected to a uniform heat flux distribution over the circular region. Dimensionless temperature distributions, size and location of the “mushy” zone, and average cooling rate during solidification are calculated as a function of the product of absorbed heat flux,q, the radius of the circular region,a, and time. General trends established show that for a given product ofqa all isotherMs are located at the same dimensionless distance for identical Fourier numbers. The results show that loss of superheat and shallower temperature gradients during solidification result in significantly larger “mushy” zone sizes than during melting. Furthermore, for a given set of process parameters, the average cooling rate increases with distance solidified from the bottom to the top of the melt pool. More... »

PAGES

1169-1177

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02670454

DOI

http://dx.doi.org/10.1007/bf02670454

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014115692


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Howmet Turbine Components Corporation, 49461, Whitehall, MI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sekhar", 
        "givenName": "J. A.", 
        "id": "sg:person.016661564161.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Department of Metallurgical and Materials Science, Carnegie-Mellon University, 15213, Pittsburgh, PA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kou", 
        "givenName": "S.", 
        "id": "sg:person.0710072274.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710072274.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Commerce, Center for Materials Science, National Bureau of Standards, 20234, Washington, DC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehrabian", 
        "givenName": "R.", 
        "id": "sg:person.01107677040.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107677040.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02653687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022950811", 
          "https://doi.org/10.1007/bf02653687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022950811", 
          "https://doi.org/10.1007/bf02653687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02657168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023353095", 
          "https://doi.org/10.1007/bf02657168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02657168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023353095", 
          "https://doi.org/10.1007/bf02657168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0094-4548(77)90129-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030744337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0094-4548(77)90129-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030744337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02657655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041235872", 
          "https://doi.org/10.1007/bf02657655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02657655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041235872", 
          "https://doi.org/10.1007/bf02657655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02674756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043294457", 
          "https://doi.org/10.1007/bf02674756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02674756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043294457", 
          "https://doi.org/10.1007/bf02674756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046256154", 
          "https://doi.org/10.1007/bf02654476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046256154", 
          "https://doi.org/10.1007/bf02654476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.324261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057923454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.327672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057930000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3450375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062128082"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1983-06", 
    "datePublishedReg": "1983-06-01", 
    "description": "The heat flow model previously developed for a pure metal is extended to the solidification of an alloy over a range of temperatures. The eq11Ations are then applied to rapid surface melting and solidification of an alloy substrate. The substrate is subjected to a pulse of stationary high intensity heat flux over a circular region on its bounding surface. The finite difference form of the heat transfer eq11Ation is written in terMs of dimensionless nodal temperature and enthalpy in an oblate spheroidal coordinate system. A numerical solution technique is developed for an alloy which precipitates a eutectic at the end of solidification. Generalized solutions are presented for an Al-4.5 wt pct Cu alloy subjected to a uniform heat flux distribution over the circular region. Dimensionless temperature distributions, size and location of the \u201cmushy\u201d zone, and average cooling rate during solidification are calculated as a function of the product of absorbed heat flux,q, the radius of the circular region,a, and time. General trends established show that for a given product ofqa all isotherMs are located at the same dimensionless distance for identical Fourier numbers. The results show that loss of superheat and shallower temperature gradients during solidification result in significantly larger \u201cmushy\u201d zone sizes than during melting. Furthermore, for a given set of process parameters, the average cooling rate increases with distance solidified from the bottom to the top of the melt pool.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02670454", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1317676", 
        "issn": [
          "0360-2133"
        ], 
        "name": "Metallurgical Transactions A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Heat flow model for surface melting and solidification of an alloy", 
    "pagination": "1169-1177", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "433f04031f6dac2746496babf81515c73d43ca889bd8402d51e4d7a8e371e459"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02670454"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014115692"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02670454", 
      "https://app.dimensions.ai/details/publication/pub.1014115692"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46769_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02670454"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02670454'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02670454'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02670454'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02670454'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02670454 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N34b593b0f72043198c0fc0d3148b6c99
4 schema:citation sg:pub.10.1007/bf02653687
5 sg:pub.10.1007/bf02654476
6 sg:pub.10.1007/bf02657168
7 sg:pub.10.1007/bf02657655
8 sg:pub.10.1007/bf02674756
9 https://doi.org/10.1016/0094-4548(77)90129-1
10 https://doi.org/10.1063/1.324261
11 https://doi.org/10.1063/1.327672
12 https://doi.org/10.1115/1.3450375
13 schema:datePublished 1983-06
14 schema:datePublishedReg 1983-06-01
15 schema:description The heat flow model previously developed for a pure metal is extended to the solidification of an alloy over a range of temperatures. The eq11Ations are then applied to rapid surface melting and solidification of an alloy substrate. The substrate is subjected to a pulse of stationary high intensity heat flux over a circular region on its bounding surface. The finite difference form of the heat transfer eq11Ation is written in terMs of dimensionless nodal temperature and enthalpy in an oblate spheroidal coordinate system. A numerical solution technique is developed for an alloy which precipitates a eutectic at the end of solidification. Generalized solutions are presented for an Al-4.5 wt pct Cu alloy subjected to a uniform heat flux distribution over the circular region. Dimensionless temperature distributions, size and location of the “mushy” zone, and average cooling rate during solidification are calculated as a function of the product of absorbed heat flux,q, the radius of the circular region,a, and time. General trends established show that for a given product ofqa all isotherMs are located at the same dimensionless distance for identical Fourier numbers. The results show that loss of superheat and shallower temperature gradients during solidification result in significantly larger “mushy” zone sizes than during melting. Furthermore, for a given set of process parameters, the average cooling rate increases with distance solidified from the bottom to the top of the melt pool.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Nd24ab3a7d1844f1ba45267e60319d4e8
20 Nf8b95c35135f4691a4a1f73b43bc64e2
21 sg:journal.1317676
22 schema:name Heat flow model for surface melting and solidification of an alloy
23 schema:pagination 1169-1177
24 schema:productId N264bafb2943644f9916ee5f4204bb50d
25 N35fbecb6c69844ab9398ac15b9f13b77
26 N6817bde4d00949939a522a50202554c5
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014115692
28 https://doi.org/10.1007/bf02670454
29 schema:sdDatePublished 2019-04-11T13:33
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N4fb16e59d52e4cc5a629361064acae68
32 schema:url http://link.springer.com/10.1007%2FBF02670454
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N264bafb2943644f9916ee5f4204bb50d schema:name readcube_id
37 schema:value 433f04031f6dac2746496babf81515c73d43ca889bd8402d51e4d7a8e371e459
38 rdf:type schema:PropertyValue
39 N34b593b0f72043198c0fc0d3148b6c99 rdf:first sg:person.016661564161.49
40 rdf:rest N9faecf8a79a14998bc44eb923339d367
41 N35fbecb6c69844ab9398ac15b9f13b77 schema:name doi
42 schema:value 10.1007/bf02670454
43 rdf:type schema:PropertyValue
44 N3f61980ddac34647a0700f26dde4b4f6 schema:name Howmet Turbine Components Corporation, 49461, Whitehall, MI
45 rdf:type schema:Organization
46 N4fb16e59d52e4cc5a629361064acae68 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N6817bde4d00949939a522a50202554c5 schema:name dimensions_id
49 schema:value pub.1014115692
50 rdf:type schema:PropertyValue
51 N94bef8af0ed74ec0921a063fc90bc0e6 rdf:first sg:person.01107677040.70
52 rdf:rest rdf:nil
53 N9faecf8a79a14998bc44eb923339d367 rdf:first sg:person.0710072274.07
54 rdf:rest N94bef8af0ed74ec0921a063fc90bc0e6
55 Nad236c69bca549afb6fc8eb057afb2ad schema:name Department of Commerce, Center for Materials Science, National Bureau of Standards, 20234, Washington, DC
56 rdf:type schema:Organization
57 Nd24ab3a7d1844f1ba45267e60319d4e8 schema:issueNumber 6
58 rdf:type schema:PublicationIssue
59 Nf8b95c35135f4691a4a1f73b43bc64e2 schema:volumeNumber 14
60 rdf:type schema:PublicationVolume
61 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
62 schema:name Engineering
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
65 schema:name Interdisciplinary Engineering
66 rdf:type schema:DefinedTerm
67 sg:journal.1317676 schema:issn 0360-2133
68 schema:name Metallurgical Transactions A
69 rdf:type schema:Periodical
70 sg:person.01107677040.70 schema:affiliation Nad236c69bca549afb6fc8eb057afb2ad
71 schema:familyName Mehrabian
72 schema:givenName R.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107677040.70
74 rdf:type schema:Person
75 sg:person.016661564161.49 schema:affiliation N3f61980ddac34647a0700f26dde4b4f6
76 schema:familyName Sekhar
77 schema:givenName J. A.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49
79 rdf:type schema:Person
80 sg:person.0710072274.07 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
81 schema:familyName Kou
82 schema:givenName S.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710072274.07
84 rdf:type schema:Person
85 sg:pub.10.1007/bf02653687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022950811
86 https://doi.org/10.1007/bf02653687
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf02654476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046256154
89 https://doi.org/10.1007/bf02654476
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf02657168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023353095
92 https://doi.org/10.1007/bf02657168
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf02657655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235872
95 https://doi.org/10.1007/bf02657655
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf02674756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043294457
98 https://doi.org/10.1007/bf02674756
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0094-4548(77)90129-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030744337
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1063/1.324261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057923454
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1063/1.327672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057930000
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1115/1.3450375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062128082
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.147455.6 schema:alternateName Carnegie Mellon University
109 schema:name Department of Metallurgical and Materials Science, Carnegie-Mellon University, 15213, Pittsburgh, PA
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...