Modeling of equiaxed microstructure formation in casting View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-02

AUTHORS

Ph. Thévoz, J. L. Desbiolles, M. Rappaz

ABSTRACT

A general micro/macroscopic model of solidification for 2-D or 3-D castings, valid for both dendritic and eutectic equiaxed alloys, is presented. At the macroscopic level, the heat diffusion equation is solved with an enthalpy formulation using a standard FEM implicit scheme. However, instead of using a unique relationship between temperature and enthalpy (i.e., a unique solidification path), the specific heat and latent heat contributions, whose sum equals the variation of enthalpy at a given node, are calculated using a microscopic model of solidification. This model takes into account nucleation of new grains within the undercooled melt, the kinetics of the dendrite tips or of the eutectic front, and a solute balance at the scale of the grain in the case of dendritic alloys. The coupling between macroscopic and microscopic aspects is carried out using two time-steps, one at the macroscopic level for the implicit calculation of heat flow, and the other, much finer, for the microscopic calculations of nucleation and growth. This micro/macroscopic approach has been applied to one-dimensional and axisymmetric castings of Al-7 pct Si alloys. The calculated recalescences and grain sizes are compared with values measured for one-dimensional ingots cast under well-controlled conditions. Furthermore, the influence of casting conditions on temperature field, undercooling, grain size, and microstructural spacings is shown to be predicted correctly from axisymmetric calculations with regard to the expected experimental behavior. More... »

PAGES

311-322

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02670257

DOI

http://dx.doi.org/10.1007/bf02670257

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040303849


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, D\u00e9partement des Mat\u00e9riaux, Laboratoire de M\u00e9tallurgie Physique, 34 Chemin de Bellerive, CH-1007, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Th\u00e9voz", 
        "givenName": "Ph.", 
        "id": "sg:person.014717560262.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717560262.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, D\u00e9partement des Mat\u00e9riaux, Laboratoire de M\u00e9tallurgie Physique, 34 Chemin de Bellerive, CH-1007, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desbiolles", 
        "givenName": "J. L.", 
        "id": "sg:person.011355726671.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355726671.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, D\u00e9partement des Mat\u00e9riaux, Laboratoire de M\u00e9tallurgie Physique, 34 Chemin de Bellerive, CH-1007, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaz", 
        "givenName": "M.", 
        "id": "sg:person.013657516157.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-0248(87)90346-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001405332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(87)90346-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001405332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02825716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003758274", 
          "https://doi.org/10.1007/bf02825716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-7977(87)90019-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005612674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5416(84)90201-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007275551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5416(84)90201-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007275551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(75)90188-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007711642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(75)90188-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007711642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(87)90094-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007971569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(87)90094-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007971569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037363216", 
          "https://doi.org/10.1007/bf02654312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037363216", 
          "https://doi.org/10.1007/bf02654312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(87)90292-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040651818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(87)90292-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040651818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03338386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044746952", 
          "https://doi.org/10.1007/bf03338386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(79)90054-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049648156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(79)90054-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049648156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1747588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057809754"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-02", 
    "datePublishedReg": "1989-02-01", 
    "description": "A general micro/macroscopic model of solidification for 2-D or 3-D castings, valid for both dendritic and eutectic equiaxed alloys, is presented. At the macroscopic level, the heat diffusion equation is solved with an enthalpy formulation using a standard FEM implicit scheme. However, instead of using a unique relationship between temperature and enthalpy (i.e., a unique solidification path), the specific heat and latent heat contributions, whose sum equals the variation of enthalpy at a given node, are calculated using a microscopic model of solidification. This model takes into account nucleation of new grains within the undercooled melt, the kinetics of the dendrite tips or of the eutectic front, and a solute balance at the scale of the grain in the case of dendritic alloys. The coupling between macroscopic and microscopic aspects is carried out using two time-steps, one at the macroscopic level for the implicit calculation of heat flow, and the other, much finer, for the microscopic calculations of nucleation and growth. This micro/macroscopic approach has been applied to one-dimensional and axisymmetric castings of Al-7 pct Si alloys. The calculated recalescences and grain sizes are compared with values measured for one-dimensional ingots cast under well-controlled conditions. Furthermore, the influence of casting conditions on temperature field, undercooling, grain size, and microstructural spacings is shown to be predicted correctly from axisymmetric calculations with regard to the expected experimental behavior.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02670257", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1317676", 
        "issn": [
          "0360-2133"
        ], 
        "name": "Metallurgical Transactions A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Modeling of equiaxed microstructure formation in casting", 
    "pagination": "311-322", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bffd879483299449f186cb9e89e5c169523e3d678f1b9a729da919250215ced4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02670257"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040303849"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02670257", 
      "https://app.dimensions.ai/details/publication/pub.1040303849"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46757_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02670257"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02670257'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02670257'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02670257'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02670257'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02670257 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N07a6d2084a7049e289c2452292b54905
4 schema:citation sg:pub.10.1007/bf02654312
5 sg:pub.10.1007/bf02825716
6 sg:pub.10.1007/bf03338386
7 https://doi.org/10.1016/0001-6160(75)90188-1
8 https://doi.org/10.1016/0001-6160(79)90054-3
9 https://doi.org/10.1016/0001-6160(87)90094-0
10 https://doi.org/10.1016/0001-6160(87)90292-6
11 https://doi.org/10.1016/0022-0248(87)90346-0
12 https://doi.org/10.1016/0025-5416(84)90201-5
13 https://doi.org/10.1016/0167-7977(87)90019-0
14 https://doi.org/10.1063/1.1747588
15 schema:datePublished 1989-02
16 schema:datePublishedReg 1989-02-01
17 schema:description A general micro/macroscopic model of solidification for 2-D or 3-D castings, valid for both dendritic and eutectic equiaxed alloys, is presented. At the macroscopic level, the heat diffusion equation is solved with an enthalpy formulation using a standard FEM implicit scheme. However, instead of using a unique relationship between temperature and enthalpy (i.e., a unique solidification path), the specific heat and latent heat contributions, whose sum equals the variation of enthalpy at a given node, are calculated using a microscopic model of solidification. This model takes into account nucleation of new grains within the undercooled melt, the kinetics of the dendrite tips or of the eutectic front, and a solute balance at the scale of the grain in the case of dendritic alloys. The coupling between macroscopic and microscopic aspects is carried out using two time-steps, one at the macroscopic level for the implicit calculation of heat flow, and the other, much finer, for the microscopic calculations of nucleation and growth. This micro/macroscopic approach has been applied to one-dimensional and axisymmetric castings of Al-7 pct Si alloys. The calculated recalescences and grain sizes are compared with values measured for one-dimensional ingots cast under well-controlled conditions. Furthermore, the influence of casting conditions on temperature field, undercooling, grain size, and microstructural spacings is shown to be predicted correctly from axisymmetric calculations with regard to the expected experimental behavior.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N69f88005596146d28621789a024b3732
22 N8aa56d9fc5794d27ac935c349bc72146
23 sg:journal.1317676
24 schema:name Modeling of equiaxed microstructure formation in casting
25 schema:pagination 311-322
26 schema:productId N0edcab96ea1243d888a2359953bbc848
27 N9a76654535804707a7347938fe1b5e8a
28 Nf094cc3189984a1da67854eb979b73bc
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040303849
30 https://doi.org/10.1007/bf02670257
31 schema:sdDatePublished 2019-04-11T13:31
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N2d21cce895ed444694953fee93db0fe7
34 schema:url http://link.springer.com/10.1007%2FBF02670257
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N07a6d2084a7049e289c2452292b54905 rdf:first sg:person.014717560262.48
39 rdf:rest N6c6a21a096034d57b9438f0a77c47e05
40 N0edcab96ea1243d888a2359953bbc848 schema:name dimensions_id
41 schema:value pub.1040303849
42 rdf:type schema:PropertyValue
43 N2d21cce895ed444694953fee93db0fe7 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N4437be200cb34ad4863b76659bde62b1 rdf:first sg:person.013657516157.10
46 rdf:rest rdf:nil
47 N69f88005596146d28621789a024b3732 schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 N6c6a21a096034d57b9438f0a77c47e05 rdf:first sg:person.011355726671.24
50 rdf:rest N4437be200cb34ad4863b76659bde62b1
51 N8aa56d9fc5794d27ac935c349bc72146 schema:volumeNumber 20
52 rdf:type schema:PublicationVolume
53 N9a76654535804707a7347938fe1b5e8a schema:name doi
54 schema:value 10.1007/bf02670257
55 rdf:type schema:PropertyValue
56 Nf094cc3189984a1da67854eb979b73bc schema:name readcube_id
57 schema:value bffd879483299449f186cb9e89e5c169523e3d678f1b9a729da919250215ced4
58 rdf:type schema:PropertyValue
59 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
60 schema:name Engineering
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
63 schema:name Materials Engineering
64 rdf:type schema:DefinedTerm
65 sg:journal.1317676 schema:issn 0360-2133
66 schema:name Metallurgical Transactions A
67 rdf:type schema:Periodical
68 sg:person.011355726671.24 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
69 schema:familyName Desbiolles
70 schema:givenName J. L.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355726671.24
72 rdf:type schema:Person
73 sg:person.013657516157.10 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
74 schema:familyName Rappaz
75 schema:givenName M.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
77 rdf:type schema:Person
78 sg:person.014717560262.48 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
79 schema:familyName Thévoz
80 schema:givenName Ph.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717560262.48
82 rdf:type schema:Person
83 sg:pub.10.1007/bf02654312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037363216
84 https://doi.org/10.1007/bf02654312
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf02825716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003758274
87 https://doi.org/10.1007/bf02825716
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf03338386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044746952
90 https://doi.org/10.1007/bf03338386
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0001-6160(75)90188-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007711642
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0001-6160(79)90054-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049648156
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0001-6160(87)90094-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007971569
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0001-6160(87)90292-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040651818
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0022-0248(87)90346-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001405332
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0025-5416(84)90201-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007275551
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0167-7977(87)90019-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005612674
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1063/1.1747588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057809754
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.5333.6 schema:alternateName École Polytechnique Fédérale de Lausanne
109 schema:name École Polytechnique Fédérale de Lausanne, Département des Matériaux, Laboratoire de Métallurgie Physique, 34 Chemin de Bellerive, CH-1007, Lausanne, Switzerland
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...