Structures and properties of cobalt base-TaC eutectic alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1973-08

AUTHORS

John L. Walter, Harvey E. Cline

ABSTRACT

A series of cobalt base alloys with 15 and 20 pct by weight of TaC were directionally solidified to produce a high-temperature composite material. Tensile and stress-rupture properties were determined and related to composition and structure of the ingots. The volume fraction of TaC fibers and the degree of perfection of the composite structure was found to depend primarily upon the amount of chromium in the alloy and, to a lesser extent, upon the amount of TaC in the nominal composition. Tensile and stress-rupture properties of the alloy with the most uniform composite structure exceeded those of any commercial cobalt or nickel base alloy. The elongation to fracture is greater at room temperature than at high temperature because the matrix does not work harden at high temperatures. More... »

PAGES

1775-1784

References to SciGraph publications

  • 1971-12. Structures, faults, and the rod-plate transition in eutectics in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02665403

    DOI

    http://dx.doi.org/10.1007/bf02665403

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003543626


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Metallurgy and Ceramics Laboratory, General Electric Co., Corporate Research and Development, 12301, Schenectady, N.Y.", 
              "id": "http://www.grid.ac/institutes/grid.418143.b", 
              "name": [
                "Metallurgy and Ceramics Laboratory, General Electric Co., Corporate Research and Development, 12301, Schenectady, N.Y."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walter", 
            "givenName": "John L.", 
            "id": "sg:person.014421131315.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421131315.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Metallurgy and Ceramics Laboratory, General Electric Co., Corporate Research and Development, 12301, Schenectady, N.Y.", 
              "id": "http://www.grid.ac/institutes/grid.418143.b", 
              "name": [
                "Metallurgy and Ceramics Laboratory, General Electric Co., Corporate Research and Development, 12301, Schenectady, N.Y."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cline", 
            "givenName": "Harvey E.", 
            "id": "sg:person.01322643567.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322643567.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02662656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007525971", 
              "https://doi.org/10.1007/bf02662656"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1973-08", 
        "datePublishedReg": "1973-08-01", 
        "description": "A series of cobalt base alloys with 15 and 20 pct by weight of TaC were directionally solidified to produce a high-temperature composite material. Tensile and stress-rupture properties were determined and related to composition and structure of the ingots. The volume fraction of TaC fibers and the degree of perfection of the composite structure was found to depend primarily upon the amount of chromium in the alloy and, to a lesser extent, upon the amount of TaC in the nominal composition. Tensile and stress-rupture properties of the alloy with the most uniform composite structure exceeded those of any commercial cobalt or nickel base alloy. The elongation to fracture is greater at room temperature than at high temperature because the matrix does not work harden at high temperatures.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02665403", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136775", 
            "issn": [
              "1073-5615", 
              "1543-1916"
            ], 
            "name": "Metallurgical and Materials Transactions B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "stress rupture properties", 
          "composite structures", 
          "high-temperature composite materials", 
          "uniform composite structure", 
          "nickel-based alloys", 
          "high temperature", 
          "amount of TaC", 
          "base alloy", 
          "cobalt base", 
          "composite materials", 
          "eutectic alloy", 
          "amount of chromium", 
          "volume fraction", 
          "alloy", 
          "TaC fibers", 
          "commercial cobalt", 
          "nominal composition", 
          "room temperature", 
          "temperature", 
          "properties", 
          "degree of perfection", 
          "ingots", 
          "structure", 
          "PCT", 
          "materials", 
          "chromium", 
          "cobalt", 
          "elongation", 
          "fibers", 
          "matrix", 
          "composition", 
          "amount", 
          "TAC", 
          "fraction", 
          "perfection", 
          "base", 
          "series", 
          "degree", 
          "weight", 
          "extent", 
          "lesser extent"
        ], 
        "name": "Structures and properties of cobalt base-TaC eutectic alloys", 
        "pagination": "1775-1784", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003543626"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02665403"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02665403", 
          "https://app.dimensions.ai/details/publication/pub.1003543626"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_131.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02665403"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02665403'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02665403'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02665403'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02665403'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      21 PREDICATES      67 URIs      58 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02665403 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Ndf4a11e365af432c8d0034099415fa6a
    4 schema:citation sg:pub.10.1007/bf02662656
    5 schema:datePublished 1973-08
    6 schema:datePublishedReg 1973-08-01
    7 schema:description A series of cobalt base alloys with 15 and 20 pct by weight of TaC were directionally solidified to produce a high-temperature composite material. Tensile and stress-rupture properties were determined and related to composition and structure of the ingots. The volume fraction of TaC fibers and the degree of perfection of the composite structure was found to depend primarily upon the amount of chromium in the alloy and, to a lesser extent, upon the amount of TaC in the nominal composition. Tensile and stress-rupture properties of the alloy with the most uniform composite structure exceeded those of any commercial cobalt or nickel base alloy. The elongation to fracture is greater at room temperature than at high temperature because the matrix does not work harden at high temperatures.
    8 schema:genre article
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N11fb60a5898646cb8c5dff98f079b12b
    11 N845b1e08ca49490b8aeacfc3fa7ddf08
    12 sg:journal.1136775
    13 schema:keywords PCT
    14 TAC
    15 TaC fibers
    16 alloy
    17 amount
    18 amount of TaC
    19 amount of chromium
    20 base
    21 base alloy
    22 chromium
    23 cobalt
    24 cobalt base
    25 commercial cobalt
    26 composite materials
    27 composite structures
    28 composition
    29 degree
    30 degree of perfection
    31 elongation
    32 eutectic alloy
    33 extent
    34 fibers
    35 fraction
    36 high temperature
    37 high-temperature composite materials
    38 ingots
    39 lesser extent
    40 materials
    41 matrix
    42 nickel-based alloys
    43 nominal composition
    44 perfection
    45 properties
    46 room temperature
    47 series
    48 stress rupture properties
    49 structure
    50 temperature
    51 uniform composite structure
    52 volume fraction
    53 weight
    54 schema:name Structures and properties of cobalt base-TaC eutectic alloys
    55 schema:pagination 1775-1784
    56 schema:productId N94764cafe8cc4905a26f6d6d82cacd94
    57 Nbedef0d23802450d840d800452a498d5
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003543626
    59 https://doi.org/10.1007/bf02665403
    60 schema:sdDatePublished 2022-11-24T20:44
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher Na030f463360640c7bb183f9856e9e464
    63 schema:url https://doi.org/10.1007/bf02665403
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N11fb60a5898646cb8c5dff98f079b12b schema:volumeNumber 4
    68 rdf:type schema:PublicationVolume
    69 N845b1e08ca49490b8aeacfc3fa7ddf08 schema:issueNumber 8
    70 rdf:type schema:PublicationIssue
    71 N94764cafe8cc4905a26f6d6d82cacd94 schema:name dimensions_id
    72 schema:value pub.1003543626
    73 rdf:type schema:PropertyValue
    74 Na030f463360640c7bb183f9856e9e464 schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 Na0519eef9738402e958693b22dc72794 rdf:first sg:person.01322643567.10
    77 rdf:rest rdf:nil
    78 Nbedef0d23802450d840d800452a498d5 schema:name doi
    79 schema:value 10.1007/bf02665403
    80 rdf:type schema:PropertyValue
    81 Ndf4a11e365af432c8d0034099415fa6a rdf:first sg:person.014421131315.89
    82 rdf:rest Na0519eef9738402e958693b22dc72794
    83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Engineering
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Materials Engineering
    88 rdf:type schema:DefinedTerm
    89 sg:journal.1136775 schema:issn 1073-5615
    90 1543-1916
    91 schema:name Metallurgical and Materials Transactions B
    92 schema:publisher Springer Nature
    93 rdf:type schema:Periodical
    94 sg:person.01322643567.10 schema:affiliation grid-institutes:grid.418143.b
    95 schema:familyName Cline
    96 schema:givenName Harvey E.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322643567.10
    98 rdf:type schema:Person
    99 sg:person.014421131315.89 schema:affiliation grid-institutes:grid.418143.b
    100 schema:familyName Walter
    101 schema:givenName John L.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421131315.89
    103 rdf:type schema:Person
    104 sg:pub.10.1007/bf02662656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007525971
    105 https://doi.org/10.1007/bf02662656
    106 rdf:type schema:CreativeWork
    107 grid-institutes:grid.418143.b schema:alternateName Metallurgy and Ceramics Laboratory, General Electric Co., Corporate Research and Development, 12301, Schenectady, N.Y.
    108 schema:name Metallurgy and Ceramics Laboratory, General Electric Co., Corporate Research and Development, 12301, Schenectady, N.Y.
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...