A simple but realistic model for laser cladding View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-04

AUTHORS

M. Picasso, C. F. Marsden, J. D. Wagniere, A. Frenk, M. Rappaz

ABSTRACT

A model which takes into account the main phenomena occurring during the laser-cladding process is proposed. For a given laser power, beam radius, powder jet geometry, and clad height, this model evaluates two other processing parameters, namely, the laser-beam velocity and the powder feed rate. It considers the interactions between the powder particles, the laser beam, and the molten pool. The laser power reaching the surface of the workpiece is estimated and, assuming this power is used to remelt the substrate with the clad having been predeposited, the melt-pool shape is computed using a three-dimensional (3-D) analytical model, which produces mmediate results, even on personal computers. The predictions obtained with this numerical model are in good agreement with experimental results. Processing engineers may therefore use this model to choose the correct processing parameters and to establish cladding maps. More... »

PAGES

281-291

References to SciGraph publications

  • 1991-02. Heat-flow simulation of laser remelting with experimenting validation in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1991-04. Computational modeling of stationary gastungsten-arc weld pools and comparison to stainless steel 304 experimental results in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1992-10. A thermal model of laser cladding by powder injection in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1986-12. Three-dimensional convection in laser melted pools in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1980. Metallurgy of Welding in NONE
  • 1984-12. A two-dimensional transient model for convection in laser melted pool in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1990-01. Fluid dynamics of a stationary weld pool in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02665211

    DOI

    http://dx.doi.org/10.1007/bf02665211

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020196097


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Resources Engineering and Extractive Metallurgy", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Mathematics Department, Ecole Polytechnique, F\u00e9d\u00e9rale de Lausanne", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Mathematics Department, Ecole Polytechnique, F\u00e9d\u00e9rale de Lausanne"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Picasso", 
            "givenName": "M.", 
            "id": "sg:person.016107011343.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016107011343.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physical Metallurgy Laboratory, Ecole Polytechnique, 1015, F\u00e9d\u00e9rale de Lausanne, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Physical Metallurgy Laboratory, Ecole Polytechnique, 1015, F\u00e9d\u00e9rale de Lausanne, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marsden", 
            "givenName": "C. F.", 
            "id": "sg:person.015112367235.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112367235.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physical Metallurgy Laboratory, Ecole Polytechnique, 1015, F\u00e9d\u00e9rale de Lausanne, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Physical Metallurgy Laboratory, Ecole Polytechnique, 1015, F\u00e9d\u00e9rale de Lausanne, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wagniere", 
            "givenName": "J. D.", 
            "id": "sg:person.011134411607.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011134411607.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physical Metallurgy Laboratory, Ecole Polytechnique, 1015, F\u00e9d\u00e9rale de Lausanne, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Physical Metallurgy Laboratory, Ecole Polytechnique, 1015, F\u00e9d\u00e9rale de Lausanne, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frenk", 
            "givenName": "A.", 
            "id": "sg:person.012172600435.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012172600435.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physical Metallurgy Laboratory, Ecole Polytechnique, 1015, F\u00e9d\u00e9rale de Lausanne, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Physical Metallurgy Laboratory, Ecole Polytechnique, 1015, F\u00e9d\u00e9rale de Lausanne, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rappaz", 
            "givenName": "M.", 
            "id": "sg:person.013657516157.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02649723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049223926", 
              "https://doi.org/10.1007/bf02649723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-9506-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043637086", 
              "https://doi.org/10.1007/978-94-010-9506-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002962070", 
              "https://doi.org/10.1007/bf02647100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02672531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008314536", 
              "https://doi.org/10.1007/bf02672531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02656423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017616907", 
              "https://doi.org/10.1007/bf02656423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033815397", 
              "https://doi.org/10.1007/bf02645924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02652489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050963554", 
              "https://doi.org/10.1007/bf02652489"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-04", 
        "datePublishedReg": "1994-04-01", 
        "description": "A model which takes into account the main phenomena occurring during the laser-cladding process is proposed. For a given laser power, beam radius, powder jet geometry, and clad height, this model evaluates two other processing parameters, namely, the laser-beam velocity and the powder feed rate. It considers the interactions between the powder particles, the laser beam, and the molten pool. The laser power reaching the surface of the workpiece is estimated and, assuming this power is used to remelt the substrate with the clad having been predeposited, the melt-pool shape is computed using a three-dimensional (3-D) analytical model, which produces mmediate results, even on personal computers. The predictions obtained with this numerical model are in good agreement with experimental results. Processing engineers may therefore use this model to choose the correct processing parameters and to establish cladding maps.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02665211", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136775", 
            "issn": [
              "1073-5615", 
              "1543-1916"
            ], 
            "name": "Metallurgical and Materials Transactions B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "keywords": [
          "processing parameters", 
          "three-dimensional analytical model", 
          "laser-cladding process", 
          "laser beam velocity", 
          "laser power", 
          "powder feed rate", 
          "melt pool shape", 
          "correct processing parameters", 
          "laser cladding", 
          "molten pool", 
          "powder particles", 
          "feed rate", 
          "numerical model", 
          "processing engineers", 
          "jet geometry", 
          "analytical model", 
          "main phenomena", 
          "laser beam", 
          "experimental results", 
          "good agreement", 
          "beam radius", 
          "power", 
          "workpiece", 
          "cladding", 
          "realistic model", 
          "clad", 
          "parameters", 
          "velocity", 
          "engineers", 
          "beam", 
          "particles", 
          "model", 
          "surface", 
          "personal computer", 
          "substrate", 
          "geometry", 
          "height", 
          "shape", 
          "radius", 
          "results", 
          "prediction", 
          "agreement", 
          "process", 
          "phenomenon", 
          "account", 
          "maps", 
          "computer", 
          "rate", 
          "interaction", 
          "pool"
        ], 
        "name": "A simple but realistic model for laser cladding", 
        "pagination": "281-291", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020196097"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02665211"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02665211", 
          "https://app.dimensions.ai/details/publication/pub.1020196097"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T09:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_254.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02665211"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02665211'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02665211'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02665211'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02665211'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      22 PREDICATES      84 URIs      68 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02665211 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 anzsrc-for:0914
    4 schema:author N25cd310cf5104ee0b1437e9084efca56
    5 schema:citation sg:pub.10.1007/978-94-010-9506-8
    6 sg:pub.10.1007/bf02645924
    7 sg:pub.10.1007/bf02647100
    8 sg:pub.10.1007/bf02649723
    9 sg:pub.10.1007/bf02652489
    10 sg:pub.10.1007/bf02656423
    11 sg:pub.10.1007/bf02672531
    12 schema:datePublished 1994-04
    13 schema:datePublishedReg 1994-04-01
    14 schema:description A model which takes into account the main phenomena occurring during the laser-cladding process is proposed. For a given laser power, beam radius, powder jet geometry, and clad height, this model evaluates two other processing parameters, namely, the laser-beam velocity and the powder feed rate. It considers the interactions between the powder particles, the laser beam, and the molten pool. The laser power reaching the surface of the workpiece is estimated and, assuming this power is used to remelt the substrate with the clad having been predeposited, the melt-pool shape is computed using a three-dimensional (3-D) analytical model, which produces mmediate results, even on personal computers. The predictions obtained with this numerical model are in good agreement with experimental results. Processing engineers may therefore use this model to choose the correct processing parameters and to establish cladding maps.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N9638cab7b8194258b63e51e04271611f
    19 Na65d9c11ef8446bd86ff02d73f83a96f
    20 sg:journal.1136775
    21 schema:keywords account
    22 agreement
    23 analytical model
    24 beam
    25 beam radius
    26 clad
    27 cladding
    28 computer
    29 correct processing parameters
    30 engineers
    31 experimental results
    32 feed rate
    33 geometry
    34 good agreement
    35 height
    36 interaction
    37 jet geometry
    38 laser beam
    39 laser beam velocity
    40 laser cladding
    41 laser power
    42 laser-cladding process
    43 main phenomena
    44 maps
    45 melt pool shape
    46 model
    47 molten pool
    48 numerical model
    49 parameters
    50 particles
    51 personal computer
    52 phenomenon
    53 pool
    54 powder feed rate
    55 powder particles
    56 power
    57 prediction
    58 process
    59 processing engineers
    60 processing parameters
    61 radius
    62 rate
    63 realistic model
    64 results
    65 shape
    66 substrate
    67 surface
    68 three-dimensional analytical model
    69 velocity
    70 workpiece
    71 schema:name A simple but realistic model for laser cladding
    72 schema:pagination 281-291
    73 schema:productId N937f74dc7511477c9c1430ee8c151229
    74 Nbf1e6b215eb74a11b8ee2845d52a34e9
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020196097
    76 https://doi.org/10.1007/bf02665211
    77 schema:sdDatePublished 2022-05-10T09:43
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher N82bffcd22673412ba04e9c5311bf2342
    80 schema:url https://doi.org/10.1007/bf02665211
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N1e66950a5d90477eac860011dd64d08f rdf:first sg:person.015112367235.34
    85 rdf:rest N2c87821630e94ad5a46c268afa190628
    86 N25cd310cf5104ee0b1437e9084efca56 rdf:first sg:person.016107011343.41
    87 rdf:rest N1e66950a5d90477eac860011dd64d08f
    88 N2c87821630e94ad5a46c268afa190628 rdf:first sg:person.011134411607.26
    89 rdf:rest N63d643bf74834f00bf8355210e431a9a
    90 N63d643bf74834f00bf8355210e431a9a rdf:first sg:person.012172600435.42
    91 rdf:rest Nf8d8ddb370a34602803775b6aa09ddff
    92 N82bffcd22673412ba04e9c5311bf2342 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N937f74dc7511477c9c1430ee8c151229 schema:name doi
    95 schema:value 10.1007/bf02665211
    96 rdf:type schema:PropertyValue
    97 N9638cab7b8194258b63e51e04271611f schema:volumeNumber 25
    98 rdf:type schema:PublicationVolume
    99 Na65d9c11ef8446bd86ff02d73f83a96f schema:issueNumber 2
    100 rdf:type schema:PublicationIssue
    101 Nbf1e6b215eb74a11b8ee2845d52a34e9 schema:name dimensions_id
    102 schema:value pub.1020196097
    103 rdf:type schema:PropertyValue
    104 Nf8d8ddb370a34602803775b6aa09ddff rdf:first sg:person.013657516157.10
    105 rdf:rest rdf:nil
    106 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Engineering
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Chemical Engineering
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Resources Engineering and Extractive Metallurgy
    114 rdf:type schema:DefinedTerm
    115 sg:journal.1136775 schema:issn 1073-5615
    116 1543-1916
    117 schema:name Metallurgical and Materials Transactions B
    118 schema:publisher Springer Nature
    119 rdf:type schema:Periodical
    120 sg:person.011134411607.26 schema:affiliation grid-institutes:None
    121 schema:familyName Wagniere
    122 schema:givenName J. D.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011134411607.26
    124 rdf:type schema:Person
    125 sg:person.012172600435.42 schema:affiliation grid-institutes:None
    126 schema:familyName Frenk
    127 schema:givenName A.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012172600435.42
    129 rdf:type schema:Person
    130 sg:person.013657516157.10 schema:affiliation grid-institutes:None
    131 schema:familyName Rappaz
    132 schema:givenName M.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
    134 rdf:type schema:Person
    135 sg:person.015112367235.34 schema:affiliation grid-institutes:None
    136 schema:familyName Marsden
    137 schema:givenName C. F.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112367235.34
    139 rdf:type schema:Person
    140 sg:person.016107011343.41 schema:affiliation grid-institutes:None
    141 schema:familyName Picasso
    142 schema:givenName M.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016107011343.41
    144 rdf:type schema:Person
    145 sg:pub.10.1007/978-94-010-9506-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043637086
    146 https://doi.org/10.1007/978-94-010-9506-8
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf02645924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033815397
    149 https://doi.org/10.1007/bf02645924
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf02647100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002962070
    152 https://doi.org/10.1007/bf02647100
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf02649723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049223926
    155 https://doi.org/10.1007/bf02649723
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/bf02652489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050963554
    158 https://doi.org/10.1007/bf02652489
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/bf02656423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017616907
    161 https://doi.org/10.1007/bf02656423
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/bf02672531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008314536
    164 https://doi.org/10.1007/bf02672531
    165 rdf:type schema:CreativeWork
    166 grid-institutes:None schema:alternateName Mathematics Department, Ecole Polytechnique, Fédérale de Lausanne
    167 Physical Metallurgy Laboratory, Ecole Polytechnique, 1015, Fédérale de Lausanne, Lausanne, Switzerland
    168 schema:name Mathematics Department, Ecole Polytechnique, Fédérale de Lausanne
    169 Physical Metallurgy Laboratory, Ecole Polytechnique, 1015, Fédérale de Lausanne, Lausanne, Switzerland
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...