Modeling of ingot distortions during direct chill casting of aluminum alloys View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1996-10

AUTHORS

J. -M. Drezet, M. Rappaz

ABSTRACT

A comprehensive three-dimensional (3-D) mathematical model based upon the ABAQUS software has been developed for the computation of the thermomechanical state of the solidifying strand during direct chill (DC) casting of rolling sheet ingots and during subsequent cooling. Based upon a finiteelement formulation, the model determines the temperature distribution, the stresses, and the associated deformations in the metal. For that purpose, the thermomechanical properties of the alloy have been measured up to the coherency temperature using creep and indentation tests. The thermophysical properties as well as the boundary conditions associated with the lateral water spray have been determined using inverse modeling. The predicted ingot distortions, mainly, “butt curl,” “butt swell,” and lateral faces pull-in, are compared with experimental measurements performed during solidification and after complete cooling of the ingot. Particular emphasis is placed on the nonuniform contraction of the lateral faces. The influence of the mold shape and the contributions to this contraction are assessed as a function of the casting conditions. More... »

PAGES

3214-3225

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02663872

DOI

http://dx.doi.org/10.1007/bf02663872

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016278964


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Metallurgie Physique, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Laboratoire de Metallurgie Physique, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drezet", 
        "givenName": "J. -M.", 
        "id": "sg:person.01212610757.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212610757.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Metallurgie Physique, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Laboratoire de Metallurgie Physique, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaz", 
        "givenName": "M.", 
        "id": "sg:person.013657516157.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02658437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034848226", 
          "https://doi.org/10.1007/bf02658437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03355884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047491813", 
          "https://doi.org/10.1007/bf03355884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01177060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011734771", 
          "https://doi.org/10.1007/bf01177060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02645486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013128718", 
          "https://doi.org/10.1007/bf02645486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02651729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014646416", 
          "https://doi.org/10.1007/bf02651729"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-10", 
    "datePublishedReg": "1996-10-01", 
    "description": "A comprehensive three-dimensional (3-D) mathematical model based upon the ABAQUS software has been developed for the computation of the thermomechanical state of the solidifying strand during direct chill (DC) casting of rolling sheet ingots and during subsequent cooling. Based upon a finiteelement formulation, the model determines the temperature distribution, the stresses, and the associated deformations in the metal. For that purpose, the thermomechanical properties of the alloy have been measured up to the coherency temperature using creep and indentation tests. The thermophysical properties as well as the boundary conditions associated with the lateral water spray have been determined using inverse modeling. The predicted ingot distortions, mainly, \u201cbutt curl,\u201d \u201cbutt swell,\u201d and lateral faces pull-in, are compared with experimental measurements performed during solidification and after complete cooling of the ingot. Particular emphasis is placed on the nonuniform contraction of the lateral faces. The influence of the mold shape and the contributions to this contraction are assessed as a function of the casting conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02663872", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "direct chill", 
      "three-dimensional mathematical model", 
      "butt curl", 
      "sheet ingots", 
      "coherency temperature", 
      "aluminum alloy", 
      "ABAQUS software", 
      "indentation tests", 
      "mold shape", 
      "temperature distribution", 
      "thermomechanical state", 
      "finiteelement formulation", 
      "thermomechanical properties", 
      "thermophysical properties", 
      "water spray", 
      "complete cooling", 
      "lateral faces", 
      "experimental measurements", 
      "boundary conditions", 
      "subsequent cooling", 
      "alloy", 
      "ingots", 
      "mathematical model", 
      "inverse modeling", 
      "cooling", 
      "butt swell", 
      "creep", 
      "solidification", 
      "modeling", 
      "deformation", 
      "properties", 
      "distortion", 
      "swell", 
      "spray", 
      "temperature", 
      "nonuniform contraction", 
      "conditions", 
      "metals", 
      "model", 
      "measurements", 
      "shape", 
      "formulation", 
      "stress", 
      "particular emphasis", 
      "curl", 
      "influence", 
      "software", 
      "computation", 
      "test", 
      "distribution", 
      "chills", 
      "face", 
      "contribution", 
      "state", 
      "purpose", 
      "emphasis", 
      "function", 
      "contraction", 
      "strands"
    ], 
    "name": "Modeling of ingot distortions during direct chill casting of aluminum alloys", 
    "pagination": "3214-3225", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016278964"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02663872"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02663872", 
      "https://app.dimensions.ai/details/publication/pub.1016278964"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_267.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02663872"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02663872'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02663872'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02663872'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02663872'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      89 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02663872 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3a1e83584f7d42529e1be127e94df123
4 schema:citation sg:pub.10.1007/bf01177060
5 sg:pub.10.1007/bf02645486
6 sg:pub.10.1007/bf02651729
7 sg:pub.10.1007/bf02658437
8 sg:pub.10.1007/bf03355884
9 schema:datePublished 1996-10
10 schema:datePublishedReg 1996-10-01
11 schema:description A comprehensive three-dimensional (3-D) mathematical model based upon the ABAQUS software has been developed for the computation of the thermomechanical state of the solidifying strand during direct chill (DC) casting of rolling sheet ingots and during subsequent cooling. Based upon a finiteelement formulation, the model determines the temperature distribution, the stresses, and the associated deformations in the metal. For that purpose, the thermomechanical properties of the alloy have been measured up to the coherency temperature using creep and indentation tests. The thermophysical properties as well as the boundary conditions associated with the lateral water spray have been determined using inverse modeling. The predicted ingot distortions, mainly, “butt curl,” “butt swell,” and lateral faces pull-in, are compared with experimental measurements performed during solidification and after complete cooling of the ingot. Particular emphasis is placed on the nonuniform contraction of the lateral faces. The influence of the mold shape and the contributions to this contraction are assessed as a function of the casting conditions.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N2d475b398c5d4260bc101f521412bc18
15 Nfa51310b68f14bb6b15582a19ffecfb8
16 sg:journal.1136292
17 schema:keywords ABAQUS software
18 alloy
19 aluminum alloy
20 boundary conditions
21 butt curl
22 butt swell
23 chills
24 coherency temperature
25 complete cooling
26 computation
27 conditions
28 contraction
29 contribution
30 cooling
31 creep
32 curl
33 deformation
34 direct chill
35 distortion
36 distribution
37 emphasis
38 experimental measurements
39 face
40 finiteelement formulation
41 formulation
42 function
43 indentation tests
44 influence
45 ingots
46 inverse modeling
47 lateral faces
48 mathematical model
49 measurements
50 metals
51 model
52 modeling
53 mold shape
54 nonuniform contraction
55 particular emphasis
56 properties
57 purpose
58 shape
59 sheet ingots
60 software
61 solidification
62 spray
63 state
64 strands
65 stress
66 subsequent cooling
67 swell
68 temperature
69 temperature distribution
70 test
71 thermomechanical properties
72 thermomechanical state
73 thermophysical properties
74 three-dimensional mathematical model
75 water spray
76 schema:name Modeling of ingot distortions during direct chill casting of aluminum alloys
77 schema:pagination 3214-3225
78 schema:productId N0cbe76eb32ed4ce295be6d5effce522e
79 N543736633eec404797894bcad7dda791
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016278964
81 https://doi.org/10.1007/bf02663872
82 schema:sdDatePublished 2022-12-01T06:21
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N84825b2f321a418f8a335071f357e02a
85 schema:url https://doi.org/10.1007/bf02663872
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N0cbe76eb32ed4ce295be6d5effce522e schema:name doi
90 schema:value 10.1007/bf02663872
91 rdf:type schema:PropertyValue
92 N2d475b398c5d4260bc101f521412bc18 schema:volumeNumber 27
93 rdf:type schema:PublicationVolume
94 N3036bc8303d544cd91284f3f1835151f rdf:first sg:person.013657516157.10
95 rdf:rest rdf:nil
96 N3a1e83584f7d42529e1be127e94df123 rdf:first sg:person.01212610757.30
97 rdf:rest N3036bc8303d544cd91284f3f1835151f
98 N543736633eec404797894bcad7dda791 schema:name dimensions_id
99 schema:value pub.1016278964
100 rdf:type schema:PropertyValue
101 N84825b2f321a418f8a335071f357e02a schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nfa51310b68f14bb6b15582a19ffecfb8 schema:issueNumber 10
104 rdf:type schema:PublicationIssue
105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
106 schema:name Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
109 schema:name Materials Engineering
110 rdf:type schema:DefinedTerm
111 sg:journal.1136292 schema:issn 1073-5623
112 1543-1940
113 schema:name Metallurgical and Materials Transactions A
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.01212610757.30 schema:affiliation grid-institutes:grid.5333.6
117 schema:familyName Drezet
118 schema:givenName J. -M.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212610757.30
120 rdf:type schema:Person
121 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
122 schema:familyName Rappaz
123 schema:givenName M.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
125 rdf:type schema:Person
126 sg:pub.10.1007/bf01177060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011734771
127 https://doi.org/10.1007/bf01177060
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf02645486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013128718
130 https://doi.org/10.1007/bf02645486
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf02651729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014646416
133 https://doi.org/10.1007/bf02651729
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf02658437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034848226
136 https://doi.org/10.1007/bf02658437
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/bf03355884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047491813
139 https://doi.org/10.1007/bf03355884
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.5333.6 schema:alternateName Laboratoire de Metallurgie Physique, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland
142 schema:name Laboratoire de Metallurgie Physique, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...