Modeling of multidimensional solidification of an alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-09

AUTHORS

B. Basu, J. A. Sekhar

ABSTRACT

The solidification of an alloy and pure metal is distinct because of the morphological differences between the respective interfaces. For certain conditions of imposed heat extraction, this dis-tinction can lead to large differences in the times required for complete solidification of the alloy over the pure metal. These conditions are examined in this paper. To do this, a powerful numerical technique to model alloy solidification is introduced which allows for the precise integration of the Scheil equation. The model takes into account the nonlinearity of the fraction liquid with temperature as well as the interface nonlinearity in the heat flow. As a test for the model, accurate temperature profiles from a previously published experiment are numerically simulated. The numerical results are noted to closely match experimental values, and as a con-sequence, contact heat transfer values are tabulated. One- and two-dimensional solidification of aluminum-copper alloys are now simulated for different cooling conditions (i.e., varying Biot numbers). The results obtained indicate the essential differences for alloy solidification at low and high Biot numbers and highlight the importance of properly accounting for the mushy zone. More... »

PAGES

1833-1845

References to SciGraph publications

  • 1983-06. Heat flow model for surface melting and solidification of an alloy in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1985-10. Microstructure refinement with forced convection in aluminium and superalloys in JOURNAL OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02663214

    DOI

    http://dx.doi.org/10.1007/bf02663214

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016823484


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tata Research Development and Design Center, 411001, Pune, India", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Tata Research Development and Design Center, 411001, Pune, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Basu", 
            "givenName": "B.", 
            "id": "sg:person.016072412102.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016072412102.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and En- gineering, University of Cincinnati, 45221-0012, Cincinnati, OH", 
              "id": "http://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "Department of Materials Science and En- gineering, University of Cincinnati, 45221-0012, Cincinnati, OH"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sekhar", 
            "givenName": "J. A.", 
            "id": "sg:person.016661564161.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01113760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021649166", 
              "https://doi.org/10.1007/bf01113760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02670454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014115692", 
              "https://doi.org/10.1007/bf02670454"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1989-09", 
        "datePublishedReg": "1989-09-01", 
        "description": "The solidification of an alloy and pure metal is distinct because of the morphological differences between the respective interfaces. For certain conditions of imposed heat extraction, this dis-tinction can lead to large differences in the times required for complete solidification of the alloy over the pure metal. These conditions are examined in this paper. To do this, a powerful numerical technique to model alloy solidification is introduced which allows for the precise integration of the Scheil equation. The model takes into account the nonlinearity of the fraction liquid with temperature as well as the interface nonlinearity in the heat flow. As a test for the model, accurate temperature profiles from a previously published experiment are numerically simulated. The numerical results are noted to closely match experimental values, and as a con-sequence, contact heat transfer values are tabulated. One- and two-dimensional solidification of aluminum-copper alloys are now simulated for different cooling conditions (i.e., varying Biot numbers). The results obtained indicate the essential differences for alloy solidification at low and high Biot numbers and highlight the importance of properly accounting for the mushy zone.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02663214", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "keywords": [
          "alloy solidification", 
          "aluminium-copper alloys", 
          "heat transfer values", 
          "high Biot numbers", 
          "different cooling conditions", 
          "two-dimensional solidification", 
          "pure metals", 
          "accurate temperature profiles", 
          "heat extraction", 
          "interface nonlinearity", 
          "mushy zone", 
          "Biot number", 
          "fraction liquid", 
          "cooling conditions", 
          "Scheil equation", 
          "powerful numerical technique", 
          "temperature profiles", 
          "solidification", 
          "alloy", 
          "complete solidification", 
          "heat flow", 
          "respective interfaces", 
          "numerical techniques", 
          "numerical results", 
          "multidimensional solidification", 
          "transfer values", 
          "metals", 
          "nonlinearity", 
          "experimental values", 
          "conditions", 
          "liquid", 
          "interface", 
          "flow", 
          "temperature", 
          "modeling", 
          "model", 
          "extraction", 
          "equations", 
          "certain conditions", 
          "zone", 
          "large differences", 
          "precise integration", 
          "results", 
          "technique", 
          "values", 
          "integration", 
          "experiments", 
          "test", 
          "essential difference", 
          "account", 
          "profile", 
          "time", 
          "number", 
          "differences", 
          "importance", 
          "morphological differences", 
          "paper", 
          "contact heat transfer values"
        ], 
        "name": "Modeling of multidimensional solidification of an alloy", 
        "pagination": "1833-1845", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016823484"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02663214"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02663214", 
          "https://app.dimensions.ai/details/publication/pub.1016823484"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_195.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02663214"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02663214'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02663214'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02663214'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02663214'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      22 PREDICATES      86 URIs      76 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02663214 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nadc32b84fd8642eb9abe3c91450e6734
    4 schema:citation sg:pub.10.1007/bf01113760
    5 sg:pub.10.1007/bf02670454
    6 schema:datePublished 1989-09
    7 schema:datePublishedReg 1989-09-01
    8 schema:description The solidification of an alloy and pure metal is distinct because of the morphological differences between the respective interfaces. For certain conditions of imposed heat extraction, this dis-tinction can lead to large differences in the times required for complete solidification of the alloy over the pure metal. These conditions are examined in this paper. To do this, a powerful numerical technique to model alloy solidification is introduced which allows for the precise integration of the Scheil equation. The model takes into account the nonlinearity of the fraction liquid with temperature as well as the interface nonlinearity in the heat flow. As a test for the model, accurate temperature profiles from a previously published experiment are numerically simulated. The numerical results are noted to closely match experimental values, and as a con-sequence, contact heat transfer values are tabulated. One- and two-dimensional solidification of aluminum-copper alloys are now simulated for different cooling conditions (i.e., varying Biot numbers). The results obtained indicate the essential differences for alloy solidification at low and high Biot numbers and highlight the importance of properly accounting for the mushy zone.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N7344d87369ed4bac8212d9745d7a9e19
    13 Nbf19e3702c3542f5b7bfd082e12549bc
    14 sg:journal.1136292
    15 schema:keywords Biot number
    16 Scheil equation
    17 account
    18 accurate temperature profiles
    19 alloy
    20 alloy solidification
    21 aluminium-copper alloys
    22 certain conditions
    23 complete solidification
    24 conditions
    25 contact heat transfer values
    26 cooling conditions
    27 differences
    28 different cooling conditions
    29 equations
    30 essential difference
    31 experimental values
    32 experiments
    33 extraction
    34 flow
    35 fraction liquid
    36 heat extraction
    37 heat flow
    38 heat transfer values
    39 high Biot numbers
    40 importance
    41 integration
    42 interface
    43 interface nonlinearity
    44 large differences
    45 liquid
    46 metals
    47 model
    48 modeling
    49 morphological differences
    50 multidimensional solidification
    51 mushy zone
    52 nonlinearity
    53 number
    54 numerical results
    55 numerical techniques
    56 paper
    57 powerful numerical technique
    58 precise integration
    59 profile
    60 pure metals
    61 respective interfaces
    62 results
    63 solidification
    64 technique
    65 temperature
    66 temperature profiles
    67 test
    68 time
    69 transfer values
    70 two-dimensional solidification
    71 values
    72 zone
    73 schema:name Modeling of multidimensional solidification of an alloy
    74 schema:pagination 1833-1845
    75 schema:productId N0e58734a90ed40b68198c48f212d0460
    76 Nc9cce81a896b4ee1b28e3f3d3b7fa0f3
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016823484
    78 https://doi.org/10.1007/bf02663214
    79 schema:sdDatePublished 2022-01-01T18:04
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N349c3b94042e4fcb8c95611648a4a927
    82 schema:url https://doi.org/10.1007/bf02663214
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N0e58734a90ed40b68198c48f212d0460 schema:name doi
    87 schema:value 10.1007/bf02663214
    88 rdf:type schema:PropertyValue
    89 N1b23ca48ca05455dbcf973133fe30cec rdf:first sg:person.016661564161.49
    90 rdf:rest rdf:nil
    91 N349c3b94042e4fcb8c95611648a4a927 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N7344d87369ed4bac8212d9745d7a9e19 schema:volumeNumber 20
    94 rdf:type schema:PublicationVolume
    95 Nadc32b84fd8642eb9abe3c91450e6734 rdf:first sg:person.016072412102.90
    96 rdf:rest N1b23ca48ca05455dbcf973133fe30cec
    97 Nbf19e3702c3542f5b7bfd082e12549bc schema:issueNumber 9
    98 rdf:type schema:PublicationIssue
    99 Nc9cce81a896b4ee1b28e3f3d3b7fa0f3 schema:name dimensions_id
    100 schema:value pub.1016823484
    101 rdf:type schema:PropertyValue
    102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Engineering
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Materials Engineering
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1136292 schema:issn 1073-5623
    109 1543-1940
    110 schema:name Metallurgical and Materials Transactions A
    111 schema:publisher Springer Nature
    112 rdf:type schema:Periodical
    113 sg:person.016072412102.90 schema:affiliation grid-institutes:None
    114 schema:familyName Basu
    115 schema:givenName B.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016072412102.90
    117 rdf:type schema:Person
    118 sg:person.016661564161.49 schema:affiliation grid-institutes:grid.24827.3b
    119 schema:familyName Sekhar
    120 schema:givenName J. A.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49
    122 rdf:type schema:Person
    123 sg:pub.10.1007/bf01113760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021649166
    124 https://doi.org/10.1007/bf01113760
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf02670454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014115692
    127 https://doi.org/10.1007/bf02670454
    128 rdf:type schema:CreativeWork
    129 grid-institutes:None schema:alternateName Tata Research Development and Design Center, 411001, Pune, India
    130 schema:name Tata Research Development and Design Center, 411001, Pune, India
    131 rdf:type schema:Organization
    132 grid-institutes:grid.24827.3b schema:alternateName Department of Materials Science and En- gineering, University of Cincinnati, 45221-0012, Cincinnati, OH
    133 schema:name Department of Materials Science and En- gineering, University of Cincinnati, 45221-0012, Cincinnati, OH
    134 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...