Pulmonary veins: Magnetic resonance angiography anatomy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-08

AUTHORS

Alessandro Carriero, Riccardo Marano, Rita Fossaceca, Nicola Magarelli, Lorenzo Bonomo

ABSTRACT

Objective: to optimize magnetic resonance angiography technique for the selective study of the anatomy of pulmonary veins. Materials and methods: twenty consecutive patients (13 males and seven females; mean age 30.5 years) prospectively studied were enrolled. Magnetic resonance angiography was performed using a 1 T superconductive magnet and three dimensional time of flight technique (3D TOF). Imaging with steady-state free precession sequence during intravenous infusion of contrast medium (Gd DTPA 0.2 mmol kg-1) administration was employed using the following parameters: FA 20°, TR 58 ms, TE 6 ms, MA 192 x 256, NEX 1, slice thickness 4 mm and slice orientation on the Z and F planes. Results: in the right lung magnetic resonance angiography well visualized 124 venous vessels on the coronal plane versus 106 venous vessels on the sagittal plane, whereas in the left lung magnetic resonance angiography visualized 96 vessels on the coronal plane versus 44 visualized on the sagittal plane. Our data suggest that 3D time of flight with contrast medium is a promising evaluation technique for pulmonary veins, and that combined evaluation of acquisitions on coronal and sagittal planes allows the visualization of a higher number of venous vessels. Conclusion: 3D time of flight with contrast medium and without breath-hold permits to visualize a venous vascular map of the lungs. © 1998 Elsevier Science B.V. All rights reserved. More... »

PAGES

2-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02662505

DOI

http://dx.doi.org/10.1007/bf02662505

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030693233


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Chieti, Ospedale \u2018SS. Annunziata\u2019, Via Valignani No. 1, 66100, Chieti, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carriero", 
        "givenName": "Alessandro", 
        "id": "sg:person.01310342134.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310342134.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Chieti, Ospedale \u2018SS. Annunziata\u2019, Via Valignani No. 1, 66100, Chieti, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marano", 
        "givenName": "Riccardo", 
        "id": "sg:person.01104465534.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104465534.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Chieti, Ospedale \u2018SS. Annunziata\u2019, Via Valignani No. 1, 66100, Chieti, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fossaceca", 
        "givenName": "Rita", 
        "id": "sg:person.01305474270.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305474270.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Chieti, Ospedale \u2018SS. Annunziata\u2019, Via Valignani No. 1, 66100, Chieti, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magarelli", 
        "givenName": "Nicola", 
        "id": "sg:person.01173056226.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173056226.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Chieti, Ospedale \u2018SS. Annunziata\u2019, Via Valignani No. 1, 66100, Chieti, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonomo", 
        "givenName": "Lorenzo", 
        "id": "sg:person.01015413034.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015413034.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/00005382-199321000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013896588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005382-199321000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013896588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005382-199321000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013896588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199205000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019963511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199205000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019963511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/000331979404500311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038381443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/000331979404500311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038381443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199511000-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043732115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199511000-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043732115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2008-1032958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057529062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.158.5.1566704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069317247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077411946", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.190.3.8115629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082657976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.190.2.8284406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082738114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.189.1.8372181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082779149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082968774", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-08", 
    "datePublishedReg": "1998-08-01", 
    "description": "Objective: to optimize magnetic resonance angiography technique for the selective study of the anatomy of pulmonary veins. Materials and methods: twenty consecutive patients (13 males and seven females; mean age 30.5 years) prospectively studied were enrolled. Magnetic resonance angiography was performed using a 1 T superconductive magnet and three dimensional time of flight technique (3D TOF). Imaging with steady-state free precession sequence during intravenous infusion of contrast medium (Gd DTPA 0.2 mmol kg-1) administration was employed using the following parameters: FA 20\u00b0, TR 58 ms, TE 6 ms, MA 192 x 256, NEX 1, slice thickness 4 mm and slice orientation on the Z and F planes. Results: in the right lung magnetic resonance angiography well visualized 124 venous vessels on the coronal plane versus 106 venous vessels on the sagittal plane, whereas in the left lung magnetic resonance angiography visualized 96 vessels on the coronal plane versus 44 visualized on the sagittal plane. Our data suggest that 3D time of flight with contrast medium is a promising evaluation technique for pulmonary veins, and that combined evaluation of acquisitions on coronal and sagittal planes allows the visualization of a higher number of venous vessels. Conclusion: 3D time of flight with contrast medium and without breath-hold permits to visualize a venous vascular map of the lungs. \u00a9 1998 Elsevier Science B.V. All rights reserved.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02662505", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104145", 
        "issn": [
          "0968-5243", 
          "1352-8661"
        ], 
        "name": "Magnetic Resonance Materials in Physics, Biology and Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Pulmonary veins: Magnetic resonance angiography anatomy", 
    "pagination": "2-6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9237faf69c0771fa3adfb9f760eca07b5b888ef03f57238171003fa1df9e1d91"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02662505"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030693233"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02662505", 
      "https://app.dimensions.ai/details/publication/pub.1030693233"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46744_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02662505"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02662505'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02662505'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02662505'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02662505'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02662505 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author N62691147d83d4a018ddd1e5644e45e59
4 schema:citation https://app.dimensions.ai/details/publication/pub.1077411946
5 https://app.dimensions.ai/details/publication/pub.1082968774
6 https://doi.org/10.1055/s-2008-1032958
7 https://doi.org/10.1097/00004728-199205000-00012
8 https://doi.org/10.1097/00004728-199511000-00014
9 https://doi.org/10.1097/00005382-199321000-00005
10 https://doi.org/10.1148/radiology.189.1.8372181
11 https://doi.org/10.1148/radiology.190.2.8284406
12 https://doi.org/10.1148/radiology.190.3.8115629
13 https://doi.org/10.1177/000331979404500311
14 https://doi.org/10.2214/ajr.158.5.1566704
15 schema:datePublished 1998-08
16 schema:datePublishedReg 1998-08-01
17 schema:description Objective: to optimize magnetic resonance angiography technique for the selective study of the anatomy of pulmonary veins. Materials and methods: twenty consecutive patients (13 males and seven females; mean age 30.5 years) prospectively studied were enrolled. Magnetic resonance angiography was performed using a 1 T superconductive magnet and three dimensional time of flight technique (3D TOF). Imaging with steady-state free precession sequence during intravenous infusion of contrast medium (Gd DTPA 0.2 mmol kg-1) administration was employed using the following parameters: FA 20°, TR 58 ms, TE 6 ms, MA 192 x 256, NEX 1, slice thickness 4 mm and slice orientation on the Z and F planes. Results: in the right lung magnetic resonance angiography well visualized 124 venous vessels on the coronal plane versus 106 venous vessels on the sagittal plane, whereas in the left lung magnetic resonance angiography visualized 96 vessels on the coronal plane versus 44 visualized on the sagittal plane. Our data suggest that 3D time of flight with contrast medium is a promising evaluation technique for pulmonary veins, and that combined evaluation of acquisitions on coronal and sagittal planes allows the visualization of a higher number of venous vessels. Conclusion: 3D time of flight with contrast medium and without breath-hold permits to visualize a venous vascular map of the lungs. © 1998 Elsevier Science B.V. All rights reserved.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N97f27ab2e03d4ad08e19dec7f03a38ed
22 Ne08365f1755e40e3844252b0d4fbc14d
23 sg:journal.1104145
24 schema:name Pulmonary veins: Magnetic resonance angiography anatomy
25 schema:pagination 2-6
26 schema:productId N235074c323c742a989aa87ed0e8a4611
27 N3be227ab62544230894a4ce33ebdd18e
28 N7d0d713e2f074f97ad507f0323671fed
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030693233
30 https://doi.org/10.1007/bf02662505
31 schema:sdDatePublished 2019-04-11T13:28
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N4c983968d54a4ba8a3d372af14cbd850
34 schema:url http://link.springer.com/10.1007%2FBF02662505
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N07fc748ef6404c6e9a5e6b14efa90be3 rdf:first sg:person.01173056226.10
39 rdf:rest Nd230cab785ca4b38ba2e8d004aa85d4a
40 N235074c323c742a989aa87ed0e8a4611 schema:name readcube_id
41 schema:value 9237faf69c0771fa3adfb9f760eca07b5b888ef03f57238171003fa1df9e1d91
42 rdf:type schema:PropertyValue
43 N3be227ab62544230894a4ce33ebdd18e schema:name dimensions_id
44 schema:value pub.1030693233
45 rdf:type schema:PropertyValue
46 N4c983968d54a4ba8a3d372af14cbd850 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N4f8b83a3c5ec4482a86878e49361cf85 rdf:first sg:person.01104465534.31
49 rdf:rest Nd89ff6f1d12f42a7b21e3513a6e1e020
50 N5e49526f905f40b687a49d90960ed089 schema:name Department of Radiology, University of Chieti, Ospedale ‘SS. Annunziata’, Via Valignani No. 1, 66100, Chieti, Italy
51 rdf:type schema:Organization
52 N62691147d83d4a018ddd1e5644e45e59 rdf:first sg:person.01310342134.52
53 rdf:rest N4f8b83a3c5ec4482a86878e49361cf85
54 N63653764a0564828b556a92d5fa6948b schema:name Department of Radiology, University of Chieti, Ospedale ‘SS. Annunziata’, Via Valignani No. 1, 66100, Chieti, Italy
55 rdf:type schema:Organization
56 N68e2b7d615fd46e691fb7be88b0b3213 schema:name Department of Radiology, University of Chieti, Ospedale ‘SS. Annunziata’, Via Valignani No. 1, 66100, Chieti, Italy
57 rdf:type schema:Organization
58 N6c74afeebf6b4c33a7ecb7ac2ceae23e schema:name Department of Radiology, University of Chieti, Ospedale ‘SS. Annunziata’, Via Valignani No. 1, 66100, Chieti, Italy
59 rdf:type schema:Organization
60 N7d0d713e2f074f97ad507f0323671fed schema:name doi
61 schema:value 10.1007/bf02662505
62 rdf:type schema:PropertyValue
63 N97f27ab2e03d4ad08e19dec7f03a38ed schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 Nd230cab785ca4b38ba2e8d004aa85d4a rdf:first sg:person.01015413034.57
66 rdf:rest rdf:nil
67 Nd89ff6f1d12f42a7b21e3513a6e1e020 rdf:first sg:person.01305474270.54
68 rdf:rest N07fc748ef6404c6e9a5e6b14efa90be3
69 Ne08365f1755e40e3844252b0d4fbc14d schema:volumeNumber 6
70 rdf:type schema:PublicationVolume
71 Nf830c3cedeb943d1bf3866c9c88a0dff schema:name Department of Radiology, University of Chieti, Ospedale ‘SS. Annunziata’, Via Valignani No. 1, 66100, Chieti, Italy
72 rdf:type schema:Organization
73 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
74 schema:name Medical and Health Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
77 schema:name Cardiorespiratory Medicine and Haematology
78 rdf:type schema:DefinedTerm
79 sg:journal.1104145 schema:issn 0968-5243
80 1352-8661
81 schema:name Magnetic Resonance Materials in Physics, Biology and Medicine
82 rdf:type schema:Periodical
83 sg:person.01015413034.57 schema:affiliation N63653764a0564828b556a92d5fa6948b
84 schema:familyName Bonomo
85 schema:givenName Lorenzo
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015413034.57
87 rdf:type schema:Person
88 sg:person.01104465534.31 schema:affiliation N5e49526f905f40b687a49d90960ed089
89 schema:familyName Marano
90 schema:givenName Riccardo
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104465534.31
92 rdf:type schema:Person
93 sg:person.01173056226.10 schema:affiliation N6c74afeebf6b4c33a7ecb7ac2ceae23e
94 schema:familyName Magarelli
95 schema:givenName Nicola
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173056226.10
97 rdf:type schema:Person
98 sg:person.01305474270.54 schema:affiliation N68e2b7d615fd46e691fb7be88b0b3213
99 schema:familyName Fossaceca
100 schema:givenName Rita
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305474270.54
102 rdf:type schema:Person
103 sg:person.01310342134.52 schema:affiliation Nf830c3cedeb943d1bf3866c9c88a0dff
104 schema:familyName Carriero
105 schema:givenName Alessandro
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310342134.52
107 rdf:type schema:Person
108 https://app.dimensions.ai/details/publication/pub.1077411946 schema:CreativeWork
109 https://app.dimensions.ai/details/publication/pub.1082968774 schema:CreativeWork
110 https://doi.org/10.1055/s-2008-1032958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057529062
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1097/00004728-199205000-00012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019963511
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1097/00004728-199511000-00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043732115
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1097/00005382-199321000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013896588
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1148/radiology.189.1.8372181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082779149
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1148/radiology.190.2.8284406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082738114
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1148/radiology.190.3.8115629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082657976
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1177/000331979404500311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038381443
125 rdf:type schema:CreativeWork
126 https://doi.org/10.2214/ajr.158.5.1566704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069317247
127 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...