Metal-ceramic composites based on the Ti-B-Cu porosity system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-01

AUTHORS

H. P. Li, S. B. Bhaduri, J. A. Sekhar

ABSTRACT

A systematic study of the microstructure/fracture toughness/processing correlation of metal-ceramic composites in the Ti-B-Cu porosity system is presented. The composites are produced by the combustion synthesis process. Fracture surfaces indicate both ductile and brittle regions. The composites are made up of Ti as the only ductile phase and TiB, TiB2, Ti2Cu, and Ti3Cu4 as brittle phases. Density measurements and scanning electron microscopy (SEM) indicate that the samples contain distributed porosity. Ductile phase toughening is responsible for the increase in fracture toughness to a maximum value of 9.9 MPa(m)1/2. Samples with large amounts of porosity do not benefit from this toughening process even though they containin situ formed whiskers. The fracture toughness of the composite is modeled by considering the additive influence of the ductile phase reinforcement (Ashby model) and the residual porosity (exponential model). Microstructural constants required for the model are evaluated from the comparison. A correlation between the mechanical properties and the combustion temperature is established. More... »

PAGES

251-261

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02660869

DOI

http://dx.doi.org/10.1007/bf02660869

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022425480


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Cincinnati, 45221-0012, Cincinnati, OH", 
          "id": "http://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "Department of Materials Science and Engineering, University of Cincinnati, 45221-0012, Cincinnati, OH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "H. P.", 
        "id": "sg:person.015266623161.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015266623161.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Idaho, 83843, Moscow, ID", 
          "id": "http://www.grid.ac/institutes/grid.266456.5", 
          "name": [
            "University of Idaho, 83843, Moscow, ID"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhaduri", 
        "givenName": "S. B.", 
        "id": "sg:person.01322105540.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322105540.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH", 
          "id": "http://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "Department of Materials Science and Engineering, Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sekhar", 
        "givenName": "J. A.", 
        "id": "sg:person.016661564161.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00797521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007080268", 
          "https://doi.org/10.1007/bf00797521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1986.0081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037360185", 
          "https://doi.org/10.1557/jmr.1986.0081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00042561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034480355", 
          "https://doi.org/10.1007/bf00042561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02663215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007223746", 
          "https://doi.org/10.1007/bf02663215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01132409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003658810", 
          "https://doi.org/10.1007/bf01132409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01144729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001356921", 
          "https://doi.org/10.1007/bf01144729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00552443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005102825", 
          "https://doi.org/10.1007/bf00552443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01730064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010182456", 
          "https://doi.org/10.1007/bf01730064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00708272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018165840", 
          "https://doi.org/10.1007/bf00708272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02403406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039014545", 
          "https://doi.org/10.1007/bf02403406"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-01", 
    "datePublishedReg": "1992-01-01", 
    "description": "A systematic study of the microstructure/fracture toughness/processing correlation of metal-ceramic composites in the Ti-B-Cu porosity system is presented. The composites are produced by the combustion synthesis process. Fracture surfaces indicate both ductile and brittle regions. The composites are made up of Ti as the only ductile phase and TiB, TiB2, Ti2Cu, and Ti3Cu4 as brittle phases. Density measurements and scanning electron microscopy (SEM) indicate that the samples contain distributed porosity. Ductile phase toughening is responsible for the increase in fracture toughness to a maximum value of 9.9 MPa(m)1/2. Samples with large amounts of porosity do not benefit from this toughening process even though they containin situ formed whiskers. The fracture toughness of the composite is modeled by considering the additive influence of the ductile phase reinforcement (Ashby model) and the residual porosity (exponential model). Microstructural constants required for the model are evaluated from the comparison. A correlation between the mechanical properties and the combustion temperature is established.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02660869", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "metal-ceramic composites", 
      "fracture toughness", 
      "porosity system", 
      "ductile-phase toughening", 
      "ductile phase reinforcements", 
      "combustion synthesis process", 
      "brittle phases", 
      "fracture surfaces", 
      "combustion temperature", 
      "ductile phase", 
      "residual porosity", 
      "mechanical properties", 
      "toughening process", 
      "distributed porosity", 
      "processing correlations", 
      "brittle region", 
      "composites", 
      "porosity", 
      "synthesis process", 
      "toughness", 
      "electron microscopy", 
      "maximum value", 
      "Ti", 
      "density measurements", 
      "TiB2", 
      "Ti2Cu", 
      "toughening", 
      "Ti3Cu4", 
      "ductile", 
      "TiB", 
      "whiskers", 
      "reinforcement", 
      "additive influence", 
      "phase", 
      "large amount", 
      "temperature", 
      "systematic study", 
      "surface", 
      "process", 
      "system", 
      "microscopy", 
      "properties", 
      "measurements", 
      "situ", 
      "influence", 
      "model", 
      "samples", 
      "amount", 
      "comparison", 
      "values", 
      "constants", 
      "increase", 
      "region", 
      "correlation", 
      "study"
    ], 
    "name": "Metal-ceramic composites based on the Ti-B-Cu porosity system", 
    "pagination": "251-261", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022425480"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02660869"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02660869", 
      "https://app.dimensions.ai/details/publication/pub.1022425480"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_229.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02660869"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02660869'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02660869'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02660869'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02660869'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      22 PREDICATES      91 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02660869 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nfa4ef67e644b4446a2dce0dd054a0dba
4 schema:citation sg:pub.10.1007/bf00042561
5 sg:pub.10.1007/bf00552443
6 sg:pub.10.1007/bf00708272
7 sg:pub.10.1007/bf00797521
8 sg:pub.10.1007/bf01132409
9 sg:pub.10.1007/bf01144729
10 sg:pub.10.1007/bf01730064
11 sg:pub.10.1007/bf02403406
12 sg:pub.10.1007/bf02663215
13 sg:pub.10.1557/jmr.1986.0081
14 schema:datePublished 1992-01
15 schema:datePublishedReg 1992-01-01
16 schema:description A systematic study of the microstructure/fracture toughness/processing correlation of metal-ceramic composites in the Ti-B-Cu porosity system is presented. The composites are produced by the combustion synthesis process. Fracture surfaces indicate both ductile and brittle regions. The composites are made up of Ti as the only ductile phase and TiB, TiB2, Ti2Cu, and Ti3Cu4 as brittle phases. Density measurements and scanning electron microscopy (SEM) indicate that the samples contain distributed porosity. Ductile phase toughening is responsible for the increase in fracture toughness to a maximum value of 9.9 MPa(m)1/2. Samples with large amounts of porosity do not benefit from this toughening process even though they containin situ formed whiskers. The fracture toughness of the composite is modeled by considering the additive influence of the ductile phase reinforcement (Ashby model) and the residual porosity (exponential model). Microstructural constants required for the model are evaluated from the comparison. A correlation between the mechanical properties and the combustion temperature is established.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N9c3f0784a99a4acaa48e8d641498c4c9
21 Nd2aa7d0759b3422a996196cac5aeaa31
22 sg:journal.1136292
23 schema:keywords Ti
24 Ti2Cu
25 Ti3Cu4
26 TiB
27 TiB2
28 additive influence
29 amount
30 brittle phases
31 brittle region
32 combustion synthesis process
33 combustion temperature
34 comparison
35 composites
36 constants
37 correlation
38 density measurements
39 distributed porosity
40 ductile
41 ductile phase
42 ductile phase reinforcements
43 ductile-phase toughening
44 electron microscopy
45 fracture surfaces
46 fracture toughness
47 increase
48 influence
49 large amount
50 maximum value
51 measurements
52 mechanical properties
53 metal-ceramic composites
54 microscopy
55 model
56 phase
57 porosity
58 porosity system
59 process
60 processing correlations
61 properties
62 region
63 reinforcement
64 residual porosity
65 samples
66 situ
67 study
68 surface
69 synthesis process
70 system
71 systematic study
72 temperature
73 toughening
74 toughening process
75 toughness
76 values
77 whiskers
78 schema:name Metal-ceramic composites based on the Ti-B-Cu porosity system
79 schema:pagination 251-261
80 schema:productId N265cb0317a784d6b8850e1d2f4666856
81 Nc0617b7deac3479291823a2763a5ad3f
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022425480
83 https://doi.org/10.1007/bf02660869
84 schema:sdDatePublished 2022-05-20T07:19
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nbeaa8943fbbd4ed2bf8d43ec1bc37ff7
87 schema:url https://doi.org/10.1007/bf02660869
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N265cb0317a784d6b8850e1d2f4666856 schema:name dimensions_id
92 schema:value pub.1022425480
93 rdf:type schema:PropertyValue
94 N57a26f3080554278ad76167d55bfab60 rdf:first sg:person.016661564161.49
95 rdf:rest rdf:nil
96 N9c3f0784a99a4acaa48e8d641498c4c9 schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 Nb5e85ddd107f49559fc9bf5c662683b5 rdf:first sg:person.01322105540.62
99 rdf:rest N57a26f3080554278ad76167d55bfab60
100 Nbeaa8943fbbd4ed2bf8d43ec1bc37ff7 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nc0617b7deac3479291823a2763a5ad3f schema:name doi
103 schema:value 10.1007/bf02660869
104 rdf:type schema:PropertyValue
105 Nd2aa7d0759b3422a996196cac5aeaa31 schema:volumeNumber 23
106 rdf:type schema:PublicationVolume
107 Nfa4ef67e644b4446a2dce0dd054a0dba rdf:first sg:person.015266623161.33
108 rdf:rest Nb5e85ddd107f49559fc9bf5c662683b5
109 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
110 schema:name Engineering
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
113 schema:name Materials Engineering
114 rdf:type schema:DefinedTerm
115 sg:journal.1136292 schema:issn 1073-5623
116 1543-1940
117 schema:name Metallurgical and Materials Transactions A
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.01322105540.62 schema:affiliation grid-institutes:grid.266456.5
121 schema:familyName Bhaduri
122 schema:givenName S. B.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322105540.62
124 rdf:type schema:Person
125 sg:person.015266623161.33 schema:affiliation grid-institutes:grid.24827.3b
126 schema:familyName Li
127 schema:givenName H. P.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015266623161.33
129 rdf:type schema:Person
130 sg:person.016661564161.49 schema:affiliation grid-institutes:grid.24827.3b
131 schema:familyName Sekhar
132 schema:givenName J. A.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49
134 rdf:type schema:Person
135 sg:pub.10.1007/bf00042561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034480355
136 https://doi.org/10.1007/bf00042561
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/bf00552443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005102825
139 https://doi.org/10.1007/bf00552443
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/bf00708272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018165840
142 https://doi.org/10.1007/bf00708272
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/bf00797521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007080268
145 https://doi.org/10.1007/bf00797521
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/bf01132409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003658810
148 https://doi.org/10.1007/bf01132409
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/bf01144729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001356921
151 https://doi.org/10.1007/bf01144729
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/bf01730064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010182456
154 https://doi.org/10.1007/bf01730064
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/bf02403406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039014545
157 https://doi.org/10.1007/bf02403406
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/bf02663215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007223746
160 https://doi.org/10.1007/bf02663215
161 rdf:type schema:CreativeWork
162 sg:pub.10.1557/jmr.1986.0081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037360185
163 https://doi.org/10.1557/jmr.1986.0081
164 rdf:type schema:CreativeWork
165 grid-institutes:grid.24827.3b schema:alternateName Department of Materials Science and Engineering, Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH
166 Department of Materials Science and Engineering, University of Cincinnati, 45221-0012, Cincinnati, OH
167 schema:name Department of Materials Science and Engineering, Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH
168 Department of Materials Science and Engineering, University of Cincinnati, 45221-0012, Cincinnati, OH
169 rdf:type schema:Organization
170 grid-institutes:grid.266456.5 schema:alternateName University of Idaho, 83843, Moscow, ID
171 schema:name University of Idaho, 83843, Moscow, ID
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...