The effects of interface kinetics anisotropy on the growth direction of cellular microstructures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-02

AUTHORS

R. Trivedi, V. Seetharaman, M. A. Eshelman

ABSTRACT

Directional solidification studies have been carried out in the pivalic acid-ethanol system in which significant anisotropies in interface kinetics and interfacial free energy are present. These anisotropic properties influence the microstructure formation and often lead to the formation of cells and dendrites which are tilted with respect to the heat flow direction. It is shown that dendrites always form in the preferred crystallographic direction, whereas the angle of tilt for cells is governed by the relative effects of heat flow and the anisotropic property of the crystal. This tilt angle for a given crystal orientation is found to increase as the velocity is increased. The angle of tilt reaches its largest value when the cell growth direction coincides with the preferred crystallographic direction,i.e., 〈001〈 direction for the cubic pivalic acid crystals. At this point, a transition from cellular to dendritic morphology occurs. The variation in the angle of tilt as a function of velocity is examined for the steady-state cellular structures. These results are then compared with the linear and the weakly nonlinear analyses of the planar interface stability to obtain the magnitude of the kinetic anisotropy effects. It is also shown that the cellular spacings as well as the amplitude of cells alter significantly with the angle of tilt under identical conditions of growth rate, temperature gradient, and composition. More... »

PAGES

585-593

References to SciGraph publications

  • 1989-05. Primary dendrite spacing and the effect of off-axis heat flow in METALLURGICAL TRANSACTIONS A
  • 1991-01. The effects of interface attachment kinetics on solidification interface morphologies in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02656826

    DOI

    http://dx.doi.org/10.1007/bf02656826

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030560655


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Iowa State University", 
              "id": "https://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Ames Laboratory, United States Department of Energy, Iowa State University, 50011, Ames, IA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trivedi", 
            "givenName": "R.", 
            "id": "sg:person.01125404132.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125404132.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universal Energy Systems", 
              "id": "https://www.grid.ac/institutes/grid.296952.3", 
              "name": [
                "Universal Energy Systems, 45432, Dayton, OH"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Seetharaman", 
            "givenName": "V.", 
            "id": "sg:person.015010067221.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015010067221.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Swiss Federal Institute of Technology in Zurich", 
              "id": "https://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Swiss Federal Institute of Technology, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eshelman", 
            "givenName": "M. A.", 
            "id": "sg:person.014311172165.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014311172165.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf03350965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006241125", 
              "https://doi.org/10.1007/bf03350965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(89)90293-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020871667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(89)90293-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020871667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(87)90251-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020978181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(87)90251-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020978181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(88)90169-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030069119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(88)90169-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030069119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(71)90165-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032819924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(71)90165-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032819924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02651662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042454976", 
              "https://doi.org/10.1007/bf02651662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02651662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042454976", 
              "https://doi.org/10.1007/bf02651662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(76)90124-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052072988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(76)90124-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052072988"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-02", 
        "datePublishedReg": "1991-02-01", 
        "description": "Directional solidification studies have been carried out in the pivalic acid-ethanol system in which significant anisotropies in interface kinetics and interfacial free energy are present. These anisotropic properties influence the microstructure formation and often lead to the formation of cells and dendrites which are tilted with respect to the heat flow direction. It is shown that dendrites always form in the preferred crystallographic direction, whereas the angle of tilt for cells is governed by the relative effects of heat flow and the anisotropic property of the crystal. This tilt angle for a given crystal orientation is found to increase as the velocity is increased. The angle of tilt reaches its largest value when the cell growth direction coincides with the preferred crystallographic direction,i.e., \u3008001\u3008 direction for the cubic pivalic acid crystals. At this point, a transition from cellular to dendritic morphology occurs. The variation in the angle of tilt as a function of velocity is examined for the steady-state cellular structures. These results are then compared with the linear and the weakly nonlinear analyses of the planar interface stability to obtain the magnitude of the kinetic anisotropy effects. It is also shown that the cellular spacings as well as the amplitude of cells alter significantly with the angle of tilt under identical conditions of growth rate, temperature gradient, and composition.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02656826", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1317676", 
            "issn": [
              "0360-2133"
            ], 
            "name": "Metallurgical Transactions A", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "name": "The effects of interface kinetics anisotropy on the growth direction of cellular microstructures", 
        "pagination": "585-593", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "91967e7f559bfacc3907823984627a81bdc670ae56be1ef6838a743a5574b2e1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02656826"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030560655"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02656826", 
          "https://app.dimensions.ai/details/publication/pub.1030560655"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000506.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02656826"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02656826'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02656826'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02656826'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02656826'


     

    This table displays all metadata directly associated to this object as RDF triples.

    103 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02656826 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author Nc7b97099a400460fa6d8b42111566527
    4 schema:citation sg:pub.10.1007/bf02651662
    5 sg:pub.10.1007/bf03350965
    6 https://doi.org/10.1016/0001-6160(88)90169-1
    7 https://doi.org/10.1016/0022-0248(71)90165-5
    8 https://doi.org/10.1016/0022-0248(76)90124-x
    9 https://doi.org/10.1016/0022-0248(87)90251-x
    10 https://doi.org/10.1016/0022-0248(89)90293-5
    11 schema:datePublished 1991-02
    12 schema:datePublishedReg 1991-02-01
    13 schema:description Directional solidification studies have been carried out in the pivalic acid-ethanol system in which significant anisotropies in interface kinetics and interfacial free energy are present. These anisotropic properties influence the microstructure formation and often lead to the formation of cells and dendrites which are tilted with respect to the heat flow direction. It is shown that dendrites always form in the preferred crystallographic direction, whereas the angle of tilt for cells is governed by the relative effects of heat flow and the anisotropic property of the crystal. This tilt angle for a given crystal orientation is found to increase as the velocity is increased. The angle of tilt reaches its largest value when the cell growth direction coincides with the preferred crystallographic direction,i.e., 〈001〈 direction for the cubic pivalic acid crystals. At this point, a transition from cellular to dendritic morphology occurs. The variation in the angle of tilt as a function of velocity is examined for the steady-state cellular structures. These results are then compared with the linear and the weakly nonlinear analyses of the planar interface stability to obtain the magnitude of the kinetic anisotropy effects. It is also shown that the cellular spacings as well as the amplitude of cells alter significantly with the angle of tilt under identical conditions of growth rate, temperature gradient, and composition.
    14 schema:genre research_article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N9642c22c2cfb4982a02b752be69ace80
    18 Nc14f7a973e45443297fdff7a3c62e726
    19 sg:journal.1317676
    20 schema:name The effects of interface kinetics anisotropy on the growth direction of cellular microstructures
    21 schema:pagination 585-593
    22 schema:productId N2e27835d11e84200a1e884beb5945cb0
    23 N39f7eb25de0e4491badc1d98ea3ce4b9
    24 Nc96e9f4b0fc0416298b5086dafdf13e6
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030560655
    26 https://doi.org/10.1007/bf02656826
    27 schema:sdDatePublished 2019-04-10T16:40
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher N830d6817858c48068d8d46770e7286d8
    30 schema:url http://link.springer.com/10.1007%2FBF02656826
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset articles
    33 rdf:type schema:ScholarlyArticle
    34 N2e27835d11e84200a1e884beb5945cb0 schema:name doi
    35 schema:value 10.1007/bf02656826
    36 rdf:type schema:PropertyValue
    37 N371eb354379e46318f637baba2b5aa65 rdf:first sg:person.014311172165.99
    38 rdf:rest rdf:nil
    39 N39f7eb25de0e4491badc1d98ea3ce4b9 schema:name readcube_id
    40 schema:value 91967e7f559bfacc3907823984627a81bdc670ae56be1ef6838a743a5574b2e1
    41 rdf:type schema:PropertyValue
    42 N4f210f77448b41f0ab97f5b45cf5e38e rdf:first sg:person.015010067221.45
    43 rdf:rest N371eb354379e46318f637baba2b5aa65
    44 N830d6817858c48068d8d46770e7286d8 schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N9642c22c2cfb4982a02b752be69ace80 schema:issueNumber 2
    47 rdf:type schema:PublicationIssue
    48 Nc14f7a973e45443297fdff7a3c62e726 schema:volumeNumber 22
    49 rdf:type schema:PublicationVolume
    50 Nc7b97099a400460fa6d8b42111566527 rdf:first sg:person.01125404132.43
    51 rdf:rest N4f210f77448b41f0ab97f5b45cf5e38e
    52 Nc96e9f4b0fc0416298b5086dafdf13e6 schema:name dimensions_id
    53 schema:value pub.1030560655
    54 rdf:type schema:PropertyValue
    55 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Biological Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Biochemistry and Cell Biology
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1317676 schema:issn 0360-2133
    62 schema:name Metallurgical Transactions A
    63 rdf:type schema:Periodical
    64 sg:person.01125404132.43 schema:affiliation https://www.grid.ac/institutes/grid.34421.30
    65 schema:familyName Trivedi
    66 schema:givenName R.
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125404132.43
    68 rdf:type schema:Person
    69 sg:person.014311172165.99 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
    70 schema:familyName Eshelman
    71 schema:givenName M. A.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014311172165.99
    73 rdf:type schema:Person
    74 sg:person.015010067221.45 schema:affiliation https://www.grid.ac/institutes/grid.296952.3
    75 schema:familyName Seetharaman
    76 schema:givenName V.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015010067221.45
    78 rdf:type schema:Person
    79 sg:pub.10.1007/bf02651662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042454976
    80 https://doi.org/10.1007/bf02651662
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf03350965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006241125
    83 https://doi.org/10.1007/bf03350965
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/0001-6160(88)90169-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030069119
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/0022-0248(71)90165-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032819924
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/0022-0248(76)90124-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052072988
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/0022-0248(87)90251-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020978181
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/0022-0248(89)90293-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020871667
    94 rdf:type schema:CreativeWork
    95 https://www.grid.ac/institutes/grid.296952.3 schema:alternateName Universal Energy Systems
    96 schema:name Universal Energy Systems, 45432, Dayton, OH
    97 rdf:type schema:Organization
    98 https://www.grid.ac/institutes/grid.34421.30 schema:alternateName Iowa State University
    99 schema:name Ames Laboratory, United States Department of Energy, Iowa State University, 50011, Ames, IA
    100 rdf:type schema:Organization
    101 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
    102 schema:name Swiss Federal Institute of Technology, Switzerland
    103 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...