Electrical conductivity in directionally solidified lead-9 and -20 wt pct copper alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-04

AUTHORS

Shinwoo Kim, W. F. Flanagan, B. D. Lichter, R. N. Grugel

ABSTRACT

Composites consisting of aligned copper dendrites in a lead matrix have been produced by directional solidification processing for potential application as grids in lead-acid batteries. To promote a uniform composite of aligned copper dendrites in a protective lead matrix, two alloy compositions, Pb-9 and -20 wt pct Cu, have been directionally solidified through a temperature gradient,Gl of 4.5 Kmm-1 at constant growth velocities which ranged from 1 to 100 µm s-1. With slow growth rates (≲10 µm s-1 ), the copper dendrites were generally columnar and continuous along the sample length; at higher velocities (≳60 µm s-1), they assumed an intricate and equiaxed morphology. In accordance with copper content and growth rate, the electrical conductivity of the directionally solidified composites was found to be as much as a 2.5 times that of pure lead. The results are compared with that predicted by a model based on a geometrical dendrite. More... »

PAGES

975-979

References to SciGraph publications

  • 1990-06. The development and potential applications of a Pb-Al Alloy in JOM
  • 1989-05. Strength and conductivity ofin situ Cu-Fe alloys in JOURNAL OF MATERIALS SCIENCE
  • 1986-06. The effect of convection on the dendrite to eutectic transition in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1988-11-01. Directional solidification of lead-copper immiscible alloys in a cyclic gravity environment in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1976-11. The physical properties of composite materials in JOURNAL OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02656519

    DOI

    http://dx.doi.org/10.1007/bf02656519

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046424351


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Shinwoo", 
            "id": "sg:person.011776203723.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776203723.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Vanderbilt University, 37235, Nashville, TN", 
              "id": "http://www.grid.ac/institutes/grid.152326.1", 
              "name": [
                "Department of Materials Science and Engineering, Vanderbilt University, 37235, Nashville, TN"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Flanagan", 
            "givenName": "W. F.", 
            "id": "sg:person.01320652234.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320652234.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Vanderbilt University, 37235, Nashville, TN", 
              "id": "http://www.grid.ac/institutes/grid.152326.1", 
              "name": [
                "Department of Materials Science and Engineering, Vanderbilt University, 37235, Nashville, TN"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lichter", 
            "givenName": "B. D.", 
            "id": "sg:person.013167441201.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013167441201.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Vanderbilt University, 37235, Nashville, TN", 
              "id": "http://www.grid.ac/institutes/grid.152326.1", 
              "name": [
                "Department of Materials Science and Engineering, Vanderbilt University, 37235, Nashville, TN"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grugel", 
            "givenName": "R. N.", 
            "id": "sg:person.013773444133.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773444133.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf03220976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025005404", 
              "https://doi.org/10.1007/bf03220976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02403361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038256941", 
              "https://doi.org/10.1007/bf02403361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02661265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002813168", 
              "https://doi.org/10.1007/bf02661265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01105700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006690038", 
              "https://doi.org/10.1007/bf01105700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009645149", 
              "https://doi.org/10.1007/bf02645801"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-04", 
        "datePublishedReg": "1993-04-01", 
        "description": "Composites consisting of aligned copper dendrites in a lead matrix have been produced by directional solidification processing for potential application as grids in lead-acid batteries. To promote a uniform composite of aligned copper dendrites in a protective lead matrix, two alloy compositions, Pb-9 and -20 wt pct Cu, have been directionally solidified through a temperature gradient,Gl of 4.5 Kmm-1 at constant growth velocities which ranged from 1 to 100 \u00b5m s-1. With slow growth rates (\u227210 \u00b5m s-1 ), the copper dendrites were generally columnar and continuous along the sample length; at higher velocities (\u227360 \u00b5m s-1), they assumed an intricate and equiaxed morphology. In accordance with copper content and growth rate, the electrical conductivity of the directionally solidified composites was found to be as much as a 2.5 times that of pure lead. The results are compared with that predicted by a model based on a geometrical dendrite.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02656519", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "24"
          }
        ], 
        "keywords": [
          "copper dendrites", 
          "electrical conductivity", 
          "lead matrix", 
          "lead-acid batteries", 
          "directional solidification processing", 
          "constant growth velocity", 
          "solidification processing", 
          "equiaxed morphology", 
          "uniform composite", 
          "alloy composition", 
          "pct copper", 
          "temperature gradient", 
          "composites", 
          "pure lead", 
          "high velocity", 
          "conductivity", 
          "sample length", 
          "potential applications", 
          "copper content", 
          "velocity", 
          "matrix", 
          "grid", 
          "batteries", 
          "growth rate", 
          "KMM-1", 
          "wt", 
          "growth velocity", 
          "copper", 
          "morphology", 
          "applications", 
          "processing", 
          "Cu", 
          "gradient", 
          "dendrites", 
          "rate", 
          "composition", 
          "model", 
          "content", 
          "results", 
          "length", 
          "lead", 
          "time", 
          "accordance", 
          "slow growth rate", 
          "PB-9", 
          "GL"
        ], 
        "name": "Electrical conductivity in directionally solidified lead-9 and -20 wt pct copper alloys", 
        "pagination": "975-979", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046424351"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02656519"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02656519", 
          "https://app.dimensions.ai/details/publication/pub.1046424351"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_248.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02656519"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02656519'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02656519'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02656519'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02656519'


     

    This table displays all metadata directly associated to this object as RDF triples.

    147 TRIPLES      21 PREDICATES      76 URIs      63 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02656519 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nbb0d3eddd2d44c2682c5288b44aa73b4
    4 schema:citation sg:pub.10.1007/bf01105700
    5 sg:pub.10.1007/bf02403361
    6 sg:pub.10.1007/bf02645801
    7 sg:pub.10.1007/bf02661265
    8 sg:pub.10.1007/bf03220976
    9 schema:datePublished 1993-04
    10 schema:datePublishedReg 1993-04-01
    11 schema:description Composites consisting of aligned copper dendrites in a lead matrix have been produced by directional solidification processing for potential application as grids in lead-acid batteries. To promote a uniform composite of aligned copper dendrites in a protective lead matrix, two alloy compositions, Pb-9 and -20 wt pct Cu, have been directionally solidified through a temperature gradient,Gl of 4.5 Kmm-1 at constant growth velocities which ranged from 1 to 100 µm s-1. With slow growth rates (≲10 µm s-1 ), the copper dendrites were generally columnar and continuous along the sample length; at higher velocities (≳60 µm s-1), they assumed an intricate and equiaxed morphology. In accordance with copper content and growth rate, the electrical conductivity of the directionally solidified composites was found to be as much as a 2.5 times that of pure lead. The results are compared with that predicted by a model based on a geometrical dendrite.
    12 schema:genre article
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N95cfe97dcdad438c9b91bb959d730748
    15 N9b3fd6d2810841b499286d1473dbfdc2
    16 sg:journal.1136292
    17 schema:keywords Cu
    18 GL
    19 KMM-1
    20 PB-9
    21 accordance
    22 alloy composition
    23 applications
    24 batteries
    25 composites
    26 composition
    27 conductivity
    28 constant growth velocity
    29 content
    30 copper
    31 copper content
    32 copper dendrites
    33 dendrites
    34 directional solidification processing
    35 electrical conductivity
    36 equiaxed morphology
    37 gradient
    38 grid
    39 growth rate
    40 growth velocity
    41 high velocity
    42 lead
    43 lead matrix
    44 lead-acid batteries
    45 length
    46 matrix
    47 model
    48 morphology
    49 pct copper
    50 potential applications
    51 processing
    52 pure lead
    53 rate
    54 results
    55 sample length
    56 slow growth rate
    57 solidification processing
    58 temperature gradient
    59 time
    60 uniform composite
    61 velocity
    62 wt
    63 schema:name Electrical conductivity in directionally solidified lead-9 and -20 wt pct copper alloys
    64 schema:pagination 975-979
    65 schema:productId N9e711de528c94329bd112bd5ad3d3b0b
    66 Nce6464446bf14c30a9d0fe5d4efdd91b
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046424351
    68 https://doi.org/10.1007/bf02656519
    69 schema:sdDatePublished 2022-09-02T15:48
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher N2b1ec9c62449454c9d09f332fc456745
    72 schema:url https://doi.org/10.1007/bf02656519
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N2b1ec9c62449454c9d09f332fc456745 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N8dabec10fba04e08bd80bd32ee677ad5 rdf:first sg:person.013167441201.94
    79 rdf:rest Na1c06d2677c8474b9c4bdd305cb98eda
    80 N95cfe97dcdad438c9b91bb959d730748 schema:issueNumber 4
    81 rdf:type schema:PublicationIssue
    82 N9b3fd6d2810841b499286d1473dbfdc2 schema:volumeNumber 24
    83 rdf:type schema:PublicationVolume
    84 N9e711de528c94329bd112bd5ad3d3b0b schema:name dimensions_id
    85 schema:value pub.1046424351
    86 rdf:type schema:PropertyValue
    87 Na1c06d2677c8474b9c4bdd305cb98eda rdf:first sg:person.013773444133.30
    88 rdf:rest rdf:nil
    89 Nb1a290ae2b454c5880343d02c9b84d4d rdf:first sg:person.01320652234.94
    90 rdf:rest N8dabec10fba04e08bd80bd32ee677ad5
    91 Nbb0d3eddd2d44c2682c5288b44aa73b4 rdf:first sg:person.011776203723.17
    92 rdf:rest Nb1a290ae2b454c5880343d02c9b84d4d
    93 Nce6464446bf14c30a9d0fe5d4efdd91b schema:name doi
    94 schema:value 10.1007/bf02656519
    95 rdf:type schema:PropertyValue
    96 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Engineering
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Materials Engineering
    101 rdf:type schema:DefinedTerm
    102 sg:journal.1136292 schema:issn 1073-5623
    103 1543-1940
    104 schema:name Metallurgical and Materials Transactions A
    105 schema:publisher Springer Nature
    106 rdf:type schema:Periodical
    107 sg:person.011776203723.17 schema:affiliation grid-institutes:None
    108 schema:familyName Kim
    109 schema:givenName Shinwoo
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776203723.17
    111 rdf:type schema:Person
    112 sg:person.013167441201.94 schema:affiliation grid-institutes:grid.152326.1
    113 schema:familyName Lichter
    114 schema:givenName B. D.
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013167441201.94
    116 rdf:type schema:Person
    117 sg:person.01320652234.94 schema:affiliation grid-institutes:grid.152326.1
    118 schema:familyName Flanagan
    119 schema:givenName W. F.
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320652234.94
    121 rdf:type schema:Person
    122 sg:person.013773444133.30 schema:affiliation grid-institutes:grid.152326.1
    123 schema:familyName Grugel
    124 schema:givenName R. N.
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773444133.30
    126 rdf:type schema:Person
    127 sg:pub.10.1007/bf01105700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006690038
    128 https://doi.org/10.1007/bf01105700
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/bf02403361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038256941
    131 https://doi.org/10.1007/bf02403361
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/bf02645801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009645149
    134 https://doi.org/10.1007/bf02645801
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf02661265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002813168
    137 https://doi.org/10.1007/bf02661265
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf03220976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025005404
    140 https://doi.org/10.1007/bf03220976
    141 rdf:type schema:CreativeWork
    142 grid-institutes:None schema:alternateName Seoul, Korea
    143 schema:name Seoul, Korea
    144 rdf:type schema:Organization
    145 grid-institutes:grid.152326.1 schema:alternateName Department of Materials Science and Engineering, Vanderbilt University, 37235, Nashville, TN
    146 schema:name Department of Materials Science and Engineering, Vanderbilt University, 37235, Nashville, TN
    147 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...