Thermosolutal convection during dendritic solidification of alloys: Part i. Linear stability analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-10

AUTHORS

P. Nandapurkar, D. R. Poirier, J. C. Heinrich, S. Felicelli

ABSTRACT

This paper describes the simulation of thermosolutal convection in directionally solidified (DS) alloys. A linear stability analysis is used to predict marginal stability curves for a system that comprises a mushy zone underlying an all-liquid zone. In the unperturbed and nonconvecting state .e.}, the basic state), isotherms and isoconcentrates are planar and horizontal. The mushy zone is realistically treated as a medium with a variable volume fraction of liquid that is con-sistent with the energy and solute conservation equations. The perturbed variables include tem-perature, concentration of solute, and both components of velocity in a two-dimensional system. As a model system, an alloy of Pb-20 wt pct Sn, solidifying at a velocity of 2 X 10-3 cm s-1 was selected. Dimensional numerical calculations were done to define the marginal stability curves in terms of the thermal gradient at the dendrite tips,GL,vs the horizontal wave number of the perturbed quantities. For a gravitational constant of 1g,0.5g, 0.1g, and 0.01g, the marginal stability curves show no minima; thus, the system is never unconditionally stable. Nevertheless, such calculations quantify the effect of reducing the gravitational constant on reducing convection and suggest lateral dimensions of the mold for the purpose of suppressing convection. Finally, for a gravitational constant of 10-4g, calculations show that the system is stable for the thermal gradients investigated (2.5 ≤GL≤ 100 K-cm-1). More... »

PAGES

711-721

References to SciGraph publications

  • 1970-08. On the nature of freckles in nickel base superalloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1978-09. An experimental and analytical study of the solidification of a binary dendritic system in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1970-06. The viscosities of lead, tin, and Pb-Sn alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1984-12. Thermosolutal convection during directional solidification in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1978-09. Steady state segregation and heat flow in ESR in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1987-09. The evolution of macrosegregation in statically cast binary ingots in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1984-01. Convection in the two-phase zone of solidifying alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1970-08. The origin of freckles in unidirectionally solidified castings in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1988-07. Channel formation in Pb-Sn, Pb-Sb, and Pb-Sn-Sb alloy ingots and comparison with the system NH4CI-H2O in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1984-12. The mechanisms of formation and prevention of channel segregation during alloy solidification in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1988-12. Enthalpies of a binary alloy during solidification in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1985-04. Dynamic solidification of a binary melt in NATURE
  • 1979-09. Macrosegregation in a multicomponent low alloy steel in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1978-12. Macrosegregation in Rotated Remelted Ingots in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1988-09. Densities of Pb-Sn alloys during solidification in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1987-03. Permeability for flow of interdendritic liquid in columnar-dendritic alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1981-09. Effect of fluid flow on macrosegregation in axi-symmetric ingots in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1981. Modelling Macrosegregation in Electroslag Remelted Ingots in ADVANCES IN METAL PROCESSING
  • 1970-05. Interdendritic fluid flow and macrosegregation; influence of gravity in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02655929

    DOI

    http://dx.doi.org/10.1007/bf02655929

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031038514


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, 85721, Tucson, AZ", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Materials Science and Engineering, 85721, Tucson, AZ"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nandapurkar", 
            "givenName": "P.", 
            "id": "sg:person.016224627243.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016224627243.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, 85721, Tucson, AZ", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Materials Science and Engineering, 85721, Tucson, AZ"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poirier", 
            "givenName": "D. R.", 
            "id": "sg:person.015717554343.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717554343.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Aerospace and Mechanical Engineering, University of Arizona, 85721, Tucson, AZ", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "Department of Aerospace and Mechanical Engineering, University of Arizona, 85721, Tucson, AZ"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heinrich", 
            "givenName": "J. C.", 
            "id": "sg:person.016470251527.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016470251527.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Aerospace and Mechanical Engineering, University of Arizona, 85721, Tucson, AZ", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "Department of Aerospace and Mechanical Engineering, University of Arizona, 85721, Tucson, AZ"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Felicelli", 
            "givenName": "S.", 
            "id": "sg:person.013321272613.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013321272613.15"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02645059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000045367", 
              "https://doi.org/10.1007/bf02645059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02654412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000266771", 
              "https://doi.org/10.1007/bf02654412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02900233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085170701", 
              "https://doi.org/10.1007/bf02900233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647732", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049371675", 
              "https://doi.org/10.1007/bf02647732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02654275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053234885", 
              "https://doi.org/10.1007/bf02654275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02652503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003691274", 
              "https://doi.org/10.1007/bf02652503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02661075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006444221", 
              "https://doi.org/10.1007/bf02661075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02654312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037363216", 
              "https://doi.org/10.1007/bf02654312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03257222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041784569", 
              "https://doi.org/10.1007/bf03257222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-8300-4_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025881719", 
              "https://doi.org/10.1007/978-1-4615-8300-4_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/314703a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010500866", 
              "https://doi.org/10.1038/314703a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023843959", 
              "https://doi.org/10.1007/bf02647099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02643435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027277476", 
              "https://doi.org/10.1007/bf02643435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02641997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021405183", 
              "https://doi.org/10.1007/bf02641997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02658450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016189863", 
              "https://doi.org/10.1007/bf02658450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023616119", 
              "https://doi.org/10.1007/bf02645156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026438927", 
              "https://doi.org/10.1007/bf02647095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02654416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007813620", 
              "https://doi.org/10.1007/bf02654416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02643434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024967584", 
              "https://doi.org/10.1007/bf02643434"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1989-10", 
        "datePublishedReg": "1989-10-01", 
        "description": "This paper describes the simulation of thermosolutal convection in directionally solidified (DS) alloys. A linear stability analysis is used to predict marginal stability curves for a system that comprises a mushy zone underlying an all-liquid zone. In the unperturbed and nonconvecting state .e.}, the basic state), isotherms and isoconcentrates are planar and horizontal. The mushy zone is realistically treated as a medium with a variable volume fraction of liquid that is con-sistent with the energy and solute conservation equations. The perturbed variables include tem-perature, concentration of solute, and both components of velocity in a two-dimensional system. As a model system, an alloy of Pb-20 wt pct Sn, solidifying at a velocity of 2 X 10-3 cm s-1 was selected. Dimensional numerical calculations were done to define the marginal stability curves in terms of the thermal gradient at the dendrite tips,GL,vs the horizontal wave number of the perturbed quantities. For a gravitational constant of 1g,0.5g, 0.1g, and 0.01g, the marginal stability curves show no minima; thus, the system is never unconditionally stable. Nevertheless, such calculations quantify the effect of reducing the gravitational constant on reducing convection and suggest lateral dimensions of the mold for the purpose of suppressing convection. Finally, for a gravitational constant of 10-4g, calculations show that the system is stable for the thermal gradients investigated (2.5 \u2264GL\u2264 100 K-cm-1).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02655929", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136775", 
            "issn": [
              "1073-5615", 
              "1543-1916"
            ], 
            "name": "Metallurgical and Materials Transactions B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "keywords": [
          "marginal stability curves", 
          "linear stability analysis", 
          "mushy zone", 
          "thermosolutal convection", 
          "stability curves", 
          "thermal gradient", 
          "solute conservation equations", 
          "stability analysis", 
          "variable volume fraction", 
          "components of velocity", 
          "horizontal wave number", 
          "liquid zone", 
          "dimensional numerical calculations", 
          "conservation equations", 
          "volume fraction", 
          "dendritic solidification", 
          "convection", 
          "lateral dimensions", 
          "alloy", 
          "perturbed quantities", 
          "concentration of solute", 
          "numerical calculations", 
          "wave number", 
          "dendrite tip", 
          "perturbed variables", 
          "velocity", 
          "basic state", 
          "solidification", 
          "zone", 
          "gradient", 
          "system", 
          "calculations", 
          "mold", 
          "isotherms", 
          "simulations", 
          "two-dimensional systems", 
          "Part I.", 
          "curves", 
          "liquid", 
          "wt", 
          "such calculations", 
          "isoconcentrates", 
          "energy", 
          "Sn", 
          "tip", 
          "equations", 
          "constants", 
          "planar", 
          "solutes", 
          "quantity", 
          "analysis", 
          "components", 
          "fraction", 
          "gravitational constant", 
          "state", 
          "concentration", 
          "terms", 
          "minimum", 
          "effect", 
          "model system", 
          "dimensions", 
          "medium", 
          "purpose", 
          "i.", 
          "number", 
          "variables", 
          "GL", 
          "paper"
        ], 
        "name": "Thermosolutal convection during dendritic solidification of alloys: Part i. Linear stability analysis", 
        "pagination": "711-721", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031038514"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02655929"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02655929", 
          "https://app.dimensions.ai/details/publication/pub.1031038514"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_186.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02655929"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02655929'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02655929'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02655929'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02655929'


     

    This table displays all metadata directly associated to this object as RDF triples.

    225 TRIPLES      21 PREDICATES      112 URIs      85 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02655929 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N080827f104e24bb49533c23b5ff146f7
    4 schema:citation sg:pub.10.1007/978-1-4615-8300-4_12
    5 sg:pub.10.1007/bf02641997
    6 sg:pub.10.1007/bf02643434
    7 sg:pub.10.1007/bf02643435
    8 sg:pub.10.1007/bf02645059
    9 sg:pub.10.1007/bf02645156
    10 sg:pub.10.1007/bf02647095
    11 sg:pub.10.1007/bf02647099
    12 sg:pub.10.1007/bf02647732
    13 sg:pub.10.1007/bf02652503
    14 sg:pub.10.1007/bf02654275
    15 sg:pub.10.1007/bf02654312
    16 sg:pub.10.1007/bf02654412
    17 sg:pub.10.1007/bf02654416
    18 sg:pub.10.1007/bf02658450
    19 sg:pub.10.1007/bf02661075
    20 sg:pub.10.1007/bf02900233
    21 sg:pub.10.1007/bf03257222
    22 sg:pub.10.1038/314703a0
    23 schema:datePublished 1989-10
    24 schema:datePublishedReg 1989-10-01
    25 schema:description This paper describes the simulation of thermosolutal convection in directionally solidified (DS) alloys. A linear stability analysis is used to predict marginal stability curves for a system that comprises a mushy zone underlying an all-liquid zone. In the unperturbed and nonconvecting state .e.}, the basic state), isotherms and isoconcentrates are planar and horizontal. The mushy zone is realistically treated as a medium with a variable volume fraction of liquid that is con-sistent with the energy and solute conservation equations. The perturbed variables include tem-perature, concentration of solute, and both components of velocity in a two-dimensional system. As a model system, an alloy of Pb-20 wt pct Sn, solidifying at a velocity of 2 X 10-3 cm s-1 was selected. Dimensional numerical calculations were done to define the marginal stability curves in terms of the thermal gradient at the dendrite tips,GL,vs the horizontal wave number of the perturbed quantities. For a gravitational constant of 1g,0.5g, 0.1g, and 0.01g, the marginal stability curves show no minima; thus, the system is never unconditionally stable. Nevertheless, such calculations quantify the effect of reducing the gravitational constant on reducing convection and suggest lateral dimensions of the mold for the purpose of suppressing convection. Finally, for a gravitational constant of 10-4g, calculations show that the system is stable for the thermal gradients investigated (2.5 ≤GL≤ 100 K-cm-1).
    26 schema:genre article
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N368ebed431d3419b844226044c792942
    29 N674f52df80f7408e8b71ba6d96efdc07
    30 sg:journal.1136775
    31 schema:keywords GL
    32 Part I.
    33 Sn
    34 alloy
    35 analysis
    36 basic state
    37 calculations
    38 components
    39 components of velocity
    40 concentration
    41 concentration of solute
    42 conservation equations
    43 constants
    44 convection
    45 curves
    46 dendrite tip
    47 dendritic solidification
    48 dimensional numerical calculations
    49 dimensions
    50 effect
    51 energy
    52 equations
    53 fraction
    54 gradient
    55 gravitational constant
    56 horizontal wave number
    57 i.
    58 isoconcentrates
    59 isotherms
    60 lateral dimensions
    61 linear stability analysis
    62 liquid
    63 liquid zone
    64 marginal stability curves
    65 medium
    66 minimum
    67 model system
    68 mold
    69 mushy zone
    70 number
    71 numerical calculations
    72 paper
    73 perturbed quantities
    74 perturbed variables
    75 planar
    76 purpose
    77 quantity
    78 simulations
    79 solidification
    80 solute conservation equations
    81 solutes
    82 stability analysis
    83 stability curves
    84 state
    85 such calculations
    86 system
    87 terms
    88 thermal gradient
    89 thermosolutal convection
    90 tip
    91 two-dimensional systems
    92 variable volume fraction
    93 variables
    94 velocity
    95 volume fraction
    96 wave number
    97 wt
    98 zone
    99 schema:name Thermosolutal convection during dendritic solidification of alloys: Part i. Linear stability analysis
    100 schema:pagination 711-721
    101 schema:productId N104dbc89240d4ae088d80c0b094b807a
    102 N922d07cd13344f69b01ba67aaa8b1474
    103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031038514
    104 https://doi.org/10.1007/bf02655929
    105 schema:sdDatePublished 2022-12-01T06:19
    106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    107 schema:sdPublisher N4cb9937081f8413a88021f8e92293209
    108 schema:url https://doi.org/10.1007/bf02655929
    109 sgo:license sg:explorer/license/
    110 sgo:sdDataset articles
    111 rdf:type schema:ScholarlyArticle
    112 N080827f104e24bb49533c23b5ff146f7 rdf:first sg:person.016224627243.97
    113 rdf:rest N6550a3069b774de8afb87b60de489a55
    114 N104dbc89240d4ae088d80c0b094b807a schema:name dimensions_id
    115 schema:value pub.1031038514
    116 rdf:type schema:PropertyValue
    117 N21b08aca18f44e759dcee07d482eb840 rdf:first sg:person.016470251527.26
    118 rdf:rest Nc2d3f82a0429483fbc1ed013df4fdefb
    119 N368ebed431d3419b844226044c792942 schema:issueNumber 5
    120 rdf:type schema:PublicationIssue
    121 N4cb9937081f8413a88021f8e92293209 schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 N6550a3069b774de8afb87b60de489a55 rdf:first sg:person.015717554343.15
    124 rdf:rest N21b08aca18f44e759dcee07d482eb840
    125 N674f52df80f7408e8b71ba6d96efdc07 schema:volumeNumber 20
    126 rdf:type schema:PublicationVolume
    127 N922d07cd13344f69b01ba67aaa8b1474 schema:name doi
    128 schema:value 10.1007/bf02655929
    129 rdf:type schema:PropertyValue
    130 Nc2d3f82a0429483fbc1ed013df4fdefb rdf:first sg:person.013321272613.15
    131 rdf:rest rdf:nil
    132 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Engineering
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Materials Engineering
    137 rdf:type schema:DefinedTerm
    138 sg:journal.1136775 schema:issn 1073-5615
    139 1543-1916
    140 schema:name Metallurgical and Materials Transactions B
    141 schema:publisher Springer Nature
    142 rdf:type schema:Periodical
    143 sg:person.013321272613.15 schema:affiliation grid-institutes:grid.134563.6
    144 schema:familyName Felicelli
    145 schema:givenName S.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013321272613.15
    147 rdf:type schema:Person
    148 sg:person.015717554343.15 schema:affiliation grid-institutes:None
    149 schema:familyName Poirier
    150 schema:givenName D. R.
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717554343.15
    152 rdf:type schema:Person
    153 sg:person.016224627243.97 schema:affiliation grid-institutes:None
    154 schema:familyName Nandapurkar
    155 schema:givenName P.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016224627243.97
    157 rdf:type schema:Person
    158 sg:person.016470251527.26 schema:affiliation grid-institutes:grid.134563.6
    159 schema:familyName Heinrich
    160 schema:givenName J. C.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016470251527.26
    162 rdf:type schema:Person
    163 sg:pub.10.1007/978-1-4615-8300-4_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025881719
    164 https://doi.org/10.1007/978-1-4615-8300-4_12
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/bf02641997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021405183
    167 https://doi.org/10.1007/bf02641997
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/bf02643434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024967584
    170 https://doi.org/10.1007/bf02643434
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/bf02643435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027277476
    173 https://doi.org/10.1007/bf02643435
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/bf02645059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000045367
    176 https://doi.org/10.1007/bf02645059
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/bf02645156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023616119
    179 https://doi.org/10.1007/bf02645156
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/bf02647095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026438927
    182 https://doi.org/10.1007/bf02647095
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/bf02647099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023843959
    185 https://doi.org/10.1007/bf02647099
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/bf02647732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049371675
    188 https://doi.org/10.1007/bf02647732
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/bf02652503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003691274
    191 https://doi.org/10.1007/bf02652503
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/bf02654275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053234885
    194 https://doi.org/10.1007/bf02654275
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/bf02654312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037363216
    197 https://doi.org/10.1007/bf02654312
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/bf02654412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000266771
    200 https://doi.org/10.1007/bf02654412
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/bf02654416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007813620
    203 https://doi.org/10.1007/bf02654416
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/bf02658450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016189863
    206 https://doi.org/10.1007/bf02658450
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/bf02661075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006444221
    209 https://doi.org/10.1007/bf02661075
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/bf02900233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085170701
    212 https://doi.org/10.1007/bf02900233
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/bf03257222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041784569
    215 https://doi.org/10.1007/bf03257222
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/314703a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010500866
    218 https://doi.org/10.1038/314703a0
    219 rdf:type schema:CreativeWork
    220 grid-institutes:None schema:alternateName Department of Materials Science and Engineering, 85721, Tucson, AZ
    221 schema:name Department of Materials Science and Engineering, 85721, Tucson, AZ
    222 rdf:type schema:Organization
    223 grid-institutes:grid.134563.6 schema:alternateName Department of Aerospace and Mechanical Engineering, University of Arizona, 85721, Tucson, AZ
    224 schema:name Department of Aerospace and Mechanical Engineering, University of Arizona, 85721, Tucson, AZ
    225 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...