Ultimate strength and morphological structure of eutectic bonds View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1974-05

AUTHORS

F. G. Yost

ABSTRACT

Eutectic bonding is a technique commonly used in the electronics industry to fasten silicon chips to substrates coated with gold. The reverse process of bonding small gold tabs to large semiconductor substrates is also possible. Gold plated Kovar tabs have been bonded to a hot pressed silicon-germanium alloy (80 wt % Si) and to single crystals of silicon and germanium. The joining alloys used were gold-silicon (2 wt % Si) and gold-germanium (22 wt % Ge) which melt at 370‡C and 356‡C, respectively. Ultimate tensile loads have been measured and found to range from approximately 7.5 to l8 kilograms. Low tensile loads were associated with semiconductor surfaces which showed little evidence of dissolution, apparently protected by a surface oxide. A preliminary etch in 10% HF increased failure load considerably. Fracture then took place within the semiconductor material. Low strength bonds exhibit a lamellar eutectic structure, while high strength bonds exhibit lace-like grain boundary penetration of gold. Bonds on single crystals have considerable microstructural detail. Some show evidence of dendritic solidification, while others show evidence of eutectic solidification. More... »

PAGES

353-369

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02652947

DOI

http://dx.doi.org/10.1007/bf02652947

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028216293


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sandia National Laboratories", 
          "id": "https://www.grid.ac/institutes/grid.474520.0", 
          "name": [
            "Supporting Technology Division, Sandia Laboratories, 87115, Albuquerque, New Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yost", 
        "givenName": "F. G.", 
        "id": "sg:person.014704653565.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014704653565.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1149/1.2425718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002900067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2412300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011896553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(72)90025-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017282311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(72)90025-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017282311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2404244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017458147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(72)90258-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021983264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(72)90258-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021983264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2404087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038532733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1661815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057740083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1722906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057789881"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1974-05", 
    "datePublishedReg": "1974-05-01", 
    "description": "Eutectic bonding is a technique commonly used in the electronics industry to fasten silicon chips to substrates coated with gold. The reverse process of bonding small gold tabs to large semiconductor substrates is also possible. Gold plated Kovar tabs have been bonded to a hot pressed silicon-germanium alloy (80 wt % Si) and to single crystals of silicon and germanium. The joining alloys used were gold-silicon (2 wt % Si) and gold-germanium (22 wt % Ge) which melt at 370\u2021C and 356\u2021C, respectively. Ultimate tensile loads have been measured and found to range from approximately 7.5 to l8 kilograms. Low tensile loads were associated with semiconductor surfaces which showed little evidence of dissolution, apparently protected by a surface oxide. A preliminary etch in 10% HF increased failure load considerably. Fracture then took place within the semiconductor material. Low strength bonds exhibit a lamellar eutectic structure, while high strength bonds exhibit lace-like grain boundary penetration of gold. Bonds on single crystals have considerable microstructural detail. Some show evidence of dendritic solidification, while others show evidence of eutectic solidification.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02652947", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Ultimate strength and morphological structure of eutectic bonds", 
    "pagination": "353-369", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "866a7e48f2b1b7ea1ae5984096a2c34b229560db226b56ef1568aa703b00409d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02652947"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028216293"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02652947", 
      "https://app.dimensions.ai/details/publication/pub.1028216293"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46765_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02652947"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02652947'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02652947'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02652947'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02652947'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02652947 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Na131493e236640518cbcf62499c295fc
4 schema:citation https://doi.org/10.1016/0039-6028(72)90025-8
5 https://doi.org/10.1016/0040-6090(72)90258-1
6 https://doi.org/10.1063/1.1661815
7 https://doi.org/10.1063/1.1722906
8 https://doi.org/10.1149/1.2404087
9 https://doi.org/10.1149/1.2404244
10 https://doi.org/10.1149/1.2412300
11 https://doi.org/10.1149/1.2425718
12 schema:datePublished 1974-05
13 schema:datePublishedReg 1974-05-01
14 schema:description Eutectic bonding is a technique commonly used in the electronics industry to fasten silicon chips to substrates coated with gold. The reverse process of bonding small gold tabs to large semiconductor substrates is also possible. Gold plated Kovar tabs have been bonded to a hot pressed silicon-germanium alloy (80 wt % Si) and to single crystals of silicon and germanium. The joining alloys used were gold-silicon (2 wt % Si) and gold-germanium (22 wt % Ge) which melt at 370‡C and 356‡C, respectively. Ultimate tensile loads have been measured and found to range from approximately 7.5 to l8 kilograms. Low tensile loads were associated with semiconductor surfaces which showed little evidence of dissolution, apparently protected by a surface oxide. A preliminary etch in 10% HF increased failure load considerably. Fracture then took place within the semiconductor material. Low strength bonds exhibit a lamellar eutectic structure, while high strength bonds exhibit lace-like grain boundary penetration of gold. Bonds on single crystals have considerable microstructural detail. Some show evidence of dendritic solidification, while others show evidence of eutectic solidification.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N2bc7ca374beb42008dd719a98d80a39e
19 Ncb96c4732a1f4b82a9dcbe1a264cf98d
20 sg:journal.1136213
21 schema:name Ultimate strength and morphological structure of eutectic bonds
22 schema:pagination 353-369
23 schema:productId Ndc5588b17cf64fdca289892ca33b8ea1
24 Ndceed34c7a414ed39997442cd72e4ecc
25 Nf9f84baec1ef4f779931d0b9b4cf17f7
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028216293
27 https://doi.org/10.1007/bf02652947
28 schema:sdDatePublished 2019-04-11T13:32
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N21badb5a3d5747c7a9db8e40e27aebf9
31 schema:url http://link.springer.com/10.1007%2FBF02652947
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N21badb5a3d5747c7a9db8e40e27aebf9 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N2bc7ca374beb42008dd719a98d80a39e schema:volumeNumber 3
38 rdf:type schema:PublicationVolume
39 Na131493e236640518cbcf62499c295fc rdf:first sg:person.014704653565.05
40 rdf:rest rdf:nil
41 Ncb96c4732a1f4b82a9dcbe1a264cf98d schema:issueNumber 2
42 rdf:type schema:PublicationIssue
43 Ndc5588b17cf64fdca289892ca33b8ea1 schema:name doi
44 schema:value 10.1007/bf02652947
45 rdf:type schema:PropertyValue
46 Ndceed34c7a414ed39997442cd72e4ecc schema:name readcube_id
47 schema:value 866a7e48f2b1b7ea1ae5984096a2c34b229560db226b56ef1568aa703b00409d
48 rdf:type schema:PropertyValue
49 Nf9f84baec1ef4f779931d0b9b4cf17f7 schema:name dimensions_id
50 schema:value pub.1028216293
51 rdf:type schema:PropertyValue
52 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
53 schema:name Engineering
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
56 schema:name Materials Engineering
57 rdf:type schema:DefinedTerm
58 sg:journal.1136213 schema:issn 0361-5235
59 1543-186X
60 schema:name Journal of Electronic Materials
61 rdf:type schema:Periodical
62 sg:person.014704653565.05 schema:affiliation https://www.grid.ac/institutes/grid.474520.0
63 schema:familyName Yost
64 schema:givenName F. G.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014704653565.05
66 rdf:type schema:Person
67 https://doi.org/10.1016/0039-6028(72)90025-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017282311
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1016/0040-6090(72)90258-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021983264
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1063/1.1661815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057740083
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1063/1.1722906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057789881
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1149/1.2404087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038532733
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1149/1.2404244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017458147
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1149/1.2412300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011896553
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1149/1.2425718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002900067
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.474520.0 schema:alternateName Sandia National Laboratories
84 schema:name Supporting Technology Division, Sandia Laboratories, 87115, Albuquerque, New Mexico
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...