3-Dimensional simulation of the grain formation in investment castings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-03

AUTHORS

Ch. -A. Gandin, M. Rappaz, R. Tintillier

ABSTRACT

A 3-dimensional (3-D) probabilistic model which has been developed previously for the prediction of grain structure formation during solidification is applied to thin superalloy plates produced using the investment-casting process. This model considers the random nucleation and orientation of nuclei formed at the mold surface and in the bulk of the liquid, the growth kinetics of the dendrite tips, and the preferential growth directions of the dendrite trunks and arms. In the present study, the grains are assumed to nucleate at the surface of the mold only. The computed grain structures, as observed in 2-dimensional (2-D) sections made parallel to the mold surface, are compared with experimental micrographs. The grain densities are then deduced as a function of the distance from the mold surface for both the experiment and the simulation. It is shown that these values are in good agreement, thus, providing validation of the grain formation mechanisms built into the 3-D probabilistic model. Finally, this model is further extended to more complex geometries and the 3-D computed grain structure of an equiaxed turbine-blade airfoil is compared with the experimental transverse section micrograph. More... »

PAGES

629-635

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02651604

DOI

http://dx.doi.org/10.1007/bf02651604

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001291895


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "D\u00e9partment des Mat\u00e9riaux, Ecole Polytechnique F\u00e9dwerale de Lausanne, MX-G Ecublens, 1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "D\u00e9partment des Mat\u00e9riaux, Ecole Polytechnique F\u00e9dwerale de Lausanne, MX-G Ecublens, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gandin", 
        "givenName": "Ch. -A.", 
        "id": "sg:person.010332710054.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332710054.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "D\u00e9partment des Mat\u00e9riaux, Ecole Polytechnique F\u00e9dwerale de Lausanne, MX-G Ecublens, 1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "D\u00e9partment des Mat\u00e9riaux, Ecole Polytechnique F\u00e9dwerale de Lausanne, MX-G Ecublens, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaz", 
        "givenName": "M.", 
        "id": "sg:person.013657516157.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "D\u00e9partment Mat\u00e9riaux et Proc\u00e9d\u00e9s-Direction Technique, Soci\u00e9t\u00e9 Nationale d\u2019Etude et de Construction de Moteurs d\u2019Aviation, 92230, Gennevilliers, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "D\u00e9partment Mat\u00e9riaux et Proc\u00e9d\u00e9s-Direction Technique, Soci\u00e9t\u00e9 Nationale d\u2019Etude et de Construction de Moteurs d\u2019Aviation, 92230, Gennevilliers, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tintillier", 
        "givenName": "R.", 
        "id": "sg:person.014341202207.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014341202207.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02657334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035268094", 
          "https://doi.org/10.1007/bf02657334"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-03", 
    "datePublishedReg": "1994-03-01", 
    "description": "A 3-dimensional (3-D) probabilistic model which has been developed previously for the prediction of grain structure formation during solidification is applied to thin superalloy plates produced using the investment-casting process. This model considers the random nucleation and orientation of nuclei formed at the mold surface and in the bulk of the liquid, the growth kinetics of the dendrite tips, and the preferential growth directions of the dendrite trunks and arms. In the present study, the grains are assumed to nucleate at the surface of the mold only. The computed grain structures, as observed in 2-dimensional (2-D) sections made parallel to the mold surface, are compared with experimental micrographs. The grain densities are then deduced as a function of the distance from the mold surface for both the experiment and the simulation. It is shown that these values are in good agreement, thus, providing validation of the grain formation mechanisms built into the 3-D probabilistic model. Finally, this model is further extended to more complex geometries and the 3-D computed grain structure of an equiaxed turbine-blade airfoil is compared with the experimental transverse section micrograph.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02651604", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "mold surface", 
      "grain structure", 
      "grain structure formation", 
      "turbine blade airfoil", 
      "grain formation mechanism", 
      "probabilistic model", 
      "investment casting", 
      "superalloy plates", 
      "preferential growth direction", 
      "complex geometries", 
      "experimental micrographs", 
      "section micrographs", 
      "dendrite trunks", 
      "growth direction", 
      "grain formation", 
      "dendrite tip", 
      "formation mechanism", 
      "random nucleation", 
      "orientation of nuclei", 
      "good agreement", 
      "surface", 
      "growth kinetics", 
      "structure formation", 
      "simulations", 
      "micrographs", 
      "airfoil", 
      "casting", 
      "solidification", 
      "grain density", 
      "model", 
      "nucleation", 
      "mold", 
      "plate", 
      "liquid", 
      "structure", 
      "geometry", 
      "grains", 
      "bulk", 
      "density", 
      "tip", 
      "kinetics", 
      "formation", 
      "prediction", 
      "agreement", 
      "process", 
      "direction", 
      "validation", 
      "orientation", 
      "experiments", 
      "function", 
      "distance", 
      "values", 
      "sections", 
      "mechanism", 
      "present study", 
      "arm", 
      "nucleus", 
      "study", 
      "trunk"
    ], 
    "name": "3-Dimensional simulation of the grain formation in investment castings", 
    "pagination": "629-635", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001291895"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02651604"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02651604", 
      "https://app.dimensions.ai/details/publication/pub.1001291895"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_249.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02651604"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02651604'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02651604'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02651604'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02651604'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      88 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02651604 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 anzsrc-for:0913
6 schema:author N51d3f245b8614551b029ec48fef0fff6
7 schema:citation sg:pub.10.1007/bf02657334
8 schema:datePublished 1994-03
9 schema:datePublishedReg 1994-03-01
10 schema:description A 3-dimensional (3-D) probabilistic model which has been developed previously for the prediction of grain structure formation during solidification is applied to thin superalloy plates produced using the investment-casting process. This model considers the random nucleation and orientation of nuclei formed at the mold surface and in the bulk of the liquid, the growth kinetics of the dendrite tips, and the preferential growth directions of the dendrite trunks and arms. In the present study, the grains are assumed to nucleate at the surface of the mold only. The computed grain structures, as observed in 2-dimensional (2-D) sections made parallel to the mold surface, are compared with experimental micrographs. The grain densities are then deduced as a function of the distance from the mold surface for both the experiment and the simulation. It is shown that these values are in good agreement, thus, providing validation of the grain formation mechanisms built into the 3-D probabilistic model. Finally, this model is further extended to more complex geometries and the 3-D computed grain structure of an equiaxed turbine-blade airfoil is compared with the experimental transverse section micrograph.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N9482b540775e4c0c9b5ab8ddbcb75a03
14 Naf805276ce864c829c935216dec00642
15 sg:journal.1136292
16 schema:keywords agreement
17 airfoil
18 arm
19 bulk
20 casting
21 complex geometries
22 dendrite tip
23 dendrite trunks
24 density
25 direction
26 distance
27 experimental micrographs
28 experiments
29 formation
30 formation mechanism
31 function
32 geometry
33 good agreement
34 grain density
35 grain formation
36 grain formation mechanism
37 grain structure
38 grain structure formation
39 grains
40 growth direction
41 growth kinetics
42 investment casting
43 kinetics
44 liquid
45 mechanism
46 micrographs
47 model
48 mold
49 mold surface
50 nucleation
51 nucleus
52 orientation
53 orientation of nuclei
54 plate
55 prediction
56 preferential growth direction
57 present study
58 probabilistic model
59 process
60 random nucleation
61 section micrographs
62 sections
63 simulations
64 solidification
65 structure
66 structure formation
67 study
68 superalloy plates
69 surface
70 tip
71 trunk
72 turbine blade airfoil
73 validation
74 values
75 schema:name 3-Dimensional simulation of the grain formation in investment castings
76 schema:pagination 629-635
77 schema:productId N4ca432a28a2b4511bc09c65a710ce9a1
78 N9489d34e6ce3431d8d9f67e194113f71
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001291895
80 https://doi.org/10.1007/bf02651604
81 schema:sdDatePublished 2022-10-01T06:29
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N89ed57e387ec4711bd3dab12e5562f0e
84 schema:url https://doi.org/10.1007/bf02651604
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N1ca626ce5f4141f489599a41248532b9 rdf:first sg:person.014341202207.47
89 rdf:rest rdf:nil
90 N2695d082acd34a2e9cc7eb0229b6a4f5 rdf:first sg:person.013657516157.10
91 rdf:rest N1ca626ce5f4141f489599a41248532b9
92 N4ca432a28a2b4511bc09c65a710ce9a1 schema:name doi
93 schema:value 10.1007/bf02651604
94 rdf:type schema:PropertyValue
95 N51d3f245b8614551b029ec48fef0fff6 rdf:first sg:person.010332710054.26
96 rdf:rest N2695d082acd34a2e9cc7eb0229b6a4f5
97 N89ed57e387ec4711bd3dab12e5562f0e schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N9482b540775e4c0c9b5ab8ddbcb75a03 schema:issueNumber 3
100 rdf:type schema:PublicationIssue
101 N9489d34e6ce3431d8d9f67e194113f71 schema:name dimensions_id
102 schema:value pub.1001291895
103 rdf:type schema:PropertyValue
104 Naf805276ce864c829c935216dec00642 schema:volumeNumber 25
105 rdf:type schema:PublicationVolume
106 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
107 schema:name Chemical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Chemistry (incl. Structural)
111 rdf:type schema:DefinedTerm
112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
113 schema:name Engineering
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
116 schema:name Materials Engineering
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
119 schema:name Mechanical Engineering
120 rdf:type schema:DefinedTerm
121 sg:journal.1136292 schema:issn 1073-5623
122 1543-1940
123 schema:name Metallurgical and Materials Transactions A
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.010332710054.26 schema:affiliation grid-institutes:None
127 schema:familyName Gandin
128 schema:givenName Ch. -A.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332710054.26
130 rdf:type schema:Person
131 sg:person.013657516157.10 schema:affiliation grid-institutes:None
132 schema:familyName Rappaz
133 schema:givenName M.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
135 rdf:type schema:Person
136 sg:person.014341202207.47 schema:affiliation grid-institutes:None
137 schema:familyName Tintillier
138 schema:givenName R.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014341202207.47
140 rdf:type schema:Person
141 sg:pub.10.1007/bf02657334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035268094
142 https://doi.org/10.1007/bf02657334
143 rdf:type schema:CreativeWork
144 grid-institutes:None schema:alternateName Départment Matériaux et Procédés-Direction Technique, Société Nationale d’Etude et de Construction de Moteurs d’Aviation, 92230, Gennevilliers, France
145 Départment des Matériaux, Ecole Polytechnique Fédwerale de Lausanne, MX-G Ecublens, 1015, Lausanne, Switzerland
146 schema:name Départment Matériaux et Procédés-Direction Technique, Société Nationale d’Etude et de Construction de Moteurs d’Aviation, 92230, Gennevilliers, France
147 Départment des Matériaux, Ecole Polytechnique Fédwerale de Lausanne, MX-G Ecublens, 1015, Lausanne, Switzerland
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...