3-Dimensional simulation of the grain formation in investment castings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-03

AUTHORS

Ch. -A. Gandin, M. Rappaz, R. Tintillier

ABSTRACT

A 3-dimensional (3-D) probabilistic model which has been developed previously for the prediction of grain structure formation during solidification is applied to thin superalloy plates produced using the investment-casting process. This model considers the random nucleation and orientation of nuclei formed at the mold surface and in the bulk of the liquid, the growth kinetics of the dendrite tips, and the preferential growth directions of the dendrite trunks and arms. In the present study, the grains are assumed to nucleate at the surface of the mold only. The computed grain structures, as observed in 2-dimensional (2-D) sections made parallel to the mold surface, are compared with experimental micrographs. The grain densities are then deduced as a function of the distance from the mold surface for both the experiment and the simulation. It is shown that these values are in good agreement, thus, providing validation of the grain formation mechanisms built into the 3-D probabilistic model. Finally, this model is further extended to more complex geometries and the 3-D computed grain structure of an equiaxed turbine-blade airfoil is compared with the experimental transverse section micrograph. More... »

PAGES

629-635

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02651604

DOI

http://dx.doi.org/10.1007/bf02651604

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001291895


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "D\u00e9partment des Mat\u00e9riaux, Ecole Polytechnique F\u00e9dwerale de Lausanne, MX-G Ecublens, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gandin", 
        "givenName": "Ch. -A.", 
        "id": "sg:person.010332710054.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332710054.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "D\u00e9partment des Mat\u00e9riaux, Ecole Polytechnique F\u00e9dwerale de Lausanne, MX-G Ecublens, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaz", 
        "givenName": "M.", 
        "id": "sg:person.013657516157.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "D\u00e9partment Mat\u00e9riaux et Proc\u00e9d\u00e9s-Direction Technique, Soci\u00e9t\u00e9 Nationale d\u2019Etude et de Construction de Moteurs d\u2019Aviation, 92230, Gennevilliers, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tintillier", 
        "givenName": "R.", 
        "id": "sg:person.014341202207.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014341202207.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0001-6160(89)90065-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010389843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(89)90065-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010389843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(93)90065-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013346211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(93)90065-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013346211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(84)90151-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015399842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(84)90151-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015399842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(92)90009-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018886107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(92)90009-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018886107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(74)90251-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021346730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(74)90251-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021346730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(92)90050-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024497276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(92)90050-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024497276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(91)90183-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031016905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(91)90183-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031016905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/mst.1989.5.4.362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034575632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02657334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035268094", 
          "https://doi.org/10.1007/bf02657334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13642818908220181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047680903"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-03", 
    "datePublishedReg": "1994-03-01", 
    "description": "A 3-dimensional (3-D) probabilistic model which has been developed previously for the prediction of grain structure formation during solidification is applied to thin superalloy plates produced using the investment-casting process. This model considers the random nucleation and orientation of nuclei formed at the mold surface and in the bulk of the liquid, the growth kinetics of the dendrite tips, and the preferential growth directions of the dendrite trunks and arms. In the present study, the grains are assumed to nucleate at the surface of the mold only. The computed grain structures, as observed in 2-dimensional (2-D) sections made parallel to the mold surface, are compared with experimental micrographs. The grain densities are then deduced as a function of the distance from the mold surface for both the experiment and the simulation. It is shown that these values are in good agreement, thus, providing validation of the grain formation mechanisms built into the 3-D probabilistic model. Finally, this model is further extended to more complex geometries and the 3-D computed grain structure of an equiaxed turbine-blade airfoil is compared with the experimental transverse section micrograph.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02651604", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "3-Dimensional simulation of the grain formation in investment castings", 
    "pagination": "629-635", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "062769de99da1b0a60d6d7c4dd7f51926a360c2133e47c3cee83201b28fa0d1f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02651604"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001291895"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02651604", 
      "https://app.dimensions.ai/details/publication/pub.1001291895"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46765_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02651604"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02651604'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02651604'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02651604'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02651604'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02651604 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N8783cdf69ebf43a2aadd15a3c5e94a30
4 schema:citation sg:pub.10.1007/bf02657334
5 https://doi.org/10.1016/0001-6160(84)90151-2
6 https://doi.org/10.1016/0001-6160(89)90065-5
7 https://doi.org/10.1016/0022-0248(74)90251-6
8 https://doi.org/10.1016/0956-7151(91)90183-2
9 https://doi.org/10.1016/0956-7151(92)90009-4
10 https://doi.org/10.1016/0956-7151(92)90050-o
11 https://doi.org/10.1016/0956-7151(93)90065-z
12 https://doi.org/10.1080/13642818908220181
13 https://doi.org/10.1179/mst.1989.5.4.362
14 schema:datePublished 1994-03
15 schema:datePublishedReg 1994-03-01
16 schema:description A 3-dimensional (3-D) probabilistic model which has been developed previously for the prediction of grain structure formation during solidification is applied to thin superalloy plates produced using the investment-casting process. This model considers the random nucleation and orientation of nuclei formed at the mold surface and in the bulk of the liquid, the growth kinetics of the dendrite tips, and the preferential growth directions of the dendrite trunks and arms. In the present study, the grains are assumed to nucleate at the surface of the mold only. The computed grain structures, as observed in 2-dimensional (2-D) sections made parallel to the mold surface, are compared with experimental micrographs. The grain densities are then deduced as a function of the distance from the mold surface for both the experiment and the simulation. It is shown that these values are in good agreement, thus, providing validation of the grain formation mechanisms built into the 3-D probabilistic model. Finally, this model is further extended to more complex geometries and the 3-D computed grain structure of an equiaxed turbine-blade airfoil is compared with the experimental transverse section micrograph.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N2008a73f37844490ba89e19a60d2d56d
21 Nf0dba7ee044841d193630fc1de65f72b
22 sg:journal.1136292
23 schema:name 3-Dimensional simulation of the grain formation in investment castings
24 schema:pagination 629-635
25 schema:productId N252da0093d534246bb8731695d5207ad
26 Na3fd7af5d42741c8acec2b3f873b34a9
27 Nf6c24d3647964f97a5ecdf70135a2e7b
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001291895
29 https://doi.org/10.1007/bf02651604
30 schema:sdDatePublished 2019-04-11T13:32
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N3200f5cf12014066b911e5f08b7fc5f9
33 schema:url http://link.springer.com/10.1007%2FBF02651604
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N2008a73f37844490ba89e19a60d2d56d schema:issueNumber 3
38 rdf:type schema:PublicationIssue
39 N252da0093d534246bb8731695d5207ad schema:name doi
40 schema:value 10.1007/bf02651604
41 rdf:type schema:PropertyValue
42 N3200f5cf12014066b911e5f08b7fc5f9 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N5bdd901de9ac48d3921c992bf6052103 schema:name Départment des Matériaux, Ecole Polytechnique Fédwerale de Lausanne, MX-G Ecublens, 1015, Lausanne, Switzerland
45 rdf:type schema:Organization
46 N5d7bbc0cc4214d8b84bf6a1034564a90 rdf:first sg:person.013657516157.10
47 rdf:rest N9d3aead7dcc64bed858ee29c210f37ff
48 N664de0c1bcc441b5ba9e0f8009c40710 schema:name Départment des Matériaux, Ecole Polytechnique Fédwerale de Lausanne, MX-G Ecublens, 1015, Lausanne, Switzerland
49 rdf:type schema:Organization
50 N8783cdf69ebf43a2aadd15a3c5e94a30 rdf:first sg:person.010332710054.26
51 rdf:rest N5d7bbc0cc4214d8b84bf6a1034564a90
52 N8a86ee77774646bf86e13e8df238dd65 schema:name Départment Matériaux et Procédés-Direction Technique, Société Nationale d’Etude et de Construction de Moteurs d’Aviation, 92230, Gennevilliers, France
53 rdf:type schema:Organization
54 N9d3aead7dcc64bed858ee29c210f37ff rdf:first sg:person.014341202207.47
55 rdf:rest rdf:nil
56 Na3fd7af5d42741c8acec2b3f873b34a9 schema:name dimensions_id
57 schema:value pub.1001291895
58 rdf:type schema:PropertyValue
59 Nf0dba7ee044841d193630fc1de65f72b schema:volumeNumber 25
60 rdf:type schema:PublicationVolume
61 Nf6c24d3647964f97a5ecdf70135a2e7b schema:name readcube_id
62 schema:value 062769de99da1b0a60d6d7c4dd7f51926a360c2133e47c3cee83201b28fa0d1f
63 rdf:type schema:PropertyValue
64 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
65 schema:name Engineering
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
68 schema:name Materials Engineering
69 rdf:type schema:DefinedTerm
70 sg:journal.1136292 schema:issn 1073-5623
71 1543-1940
72 schema:name Metallurgical and Materials Transactions A
73 rdf:type schema:Periodical
74 sg:person.010332710054.26 schema:affiliation N664de0c1bcc441b5ba9e0f8009c40710
75 schema:familyName Gandin
76 schema:givenName Ch. -A.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332710054.26
78 rdf:type schema:Person
79 sg:person.013657516157.10 schema:affiliation N5bdd901de9ac48d3921c992bf6052103
80 schema:familyName Rappaz
81 schema:givenName M.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
83 rdf:type schema:Person
84 sg:person.014341202207.47 schema:affiliation N8a86ee77774646bf86e13e8df238dd65
85 schema:familyName Tintillier
86 schema:givenName R.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014341202207.47
88 rdf:type schema:Person
89 sg:pub.10.1007/bf02657334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035268094
90 https://doi.org/10.1007/bf02657334
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0001-6160(84)90151-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015399842
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0001-6160(89)90065-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010389843
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0022-0248(74)90251-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021346730
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0956-7151(91)90183-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031016905
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0956-7151(92)90009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018886107
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0956-7151(92)90050-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1024497276
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0956-7151(93)90065-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013346211
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1080/13642818908220181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047680903
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1179/mst.1989.5.4.362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034575632
109 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...