Composite growth in hypermonotectic alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-06

AUTHORS

R. N. Grugel

ABSTRACT

The feasibility of solidifying uniformly aligned composites from alloys of hypermonotectic composition was investigated through the use of organic analogues and a directional solidification temperature gradient stage. Previously demonstrated macrostructurally detrimental effects due to coalescence and/or preferential wetting (or lack of) by the excess LII phase have been taken advantage of by the inclusion of constrained fibers aligned parallel to the growth direction. Upon passing through the miscibility gap,LII droplets are shown to attach and grow along the fibers prior to the monotectic reaction, resulting in a uniform composite. The results of different fiber materials in combination with “wetting” and “nonwetting” miscibility gap systems are presented and discussed in reference to processing in a microgravity environment. More... »

PAGES

339-348

References to SciGraph publications

  • 1980-10. The influence of microgravity on the solidification of Zn-Bi immiscible alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1979-01. Monotectic composite growth in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1988-11. The influence of interfacial energies and gravitational levels on the directionally solidified structures in hypermonotectic alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1986-07. Separation nicht mischbarer Schmelzen unter verminderter Schwerkraft in THE SCIENCE OF NATURE
  • 1988-01. Superconducting Microcomposites by Oxidation of Metallic Precursors in JOM
  • 1981-04. Alloy solidification in systems containing a liquid miscibility gap in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1988-11. Directional solidification of Cu- Pb and Bi- Ga monotectic alloys under normal gravity and during parabolic flight in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1988-11. Directional solidification of lead-copper immiscible alloys in a cyclic gravity environment in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1984-08-01. The Breakdown of Fibrous Structures in Directionally Grown Monotectic Alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1989-05. Primary dendrite spacing and the effect of off-axis heat flow in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1984-06-01. Interdendritic Spacing: Part I. Experimental Studies in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1984-06-01. Interdendritic Spacing: Part II. A Comparison of Theory and Experiment in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1989-11. Fluid flow in solidifying monotectic alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1987-06-01. On the infiltration of metal matrix composites in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1988-11. Influence of gravity level and interfacial energies on dispersion-forming tendencies in hypermonotectic Cu-Pb-Al alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1987. Systems with a Miscibility Gap in the Liquid State in FLUID SCIENCES AND MATERIALS SCIENCE IN SPACE
  • 1989-11. Infiltration of fibrous preforms by a pure metal: Part I. Theory in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1984-06-01. The solidification of monotectic alloys—Microstructures and phase spacings in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1989-01. The growth of tubular or vermicular structures in organic monotectic systems in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02651233

    DOI

    http://dx.doi.org/10.1007/bf02651233

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009547541


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Center for Micro- gravity Research and Applications, Vanderbilt University, 37235, Nashville, TN", 
              "id": "http://www.grid.ac/institutes/grid.152326.1", 
              "name": [
                "Department of Materials Science and Engineering, Center for Micro- gravity Research and Applications, Vanderbilt University, 37235, Nashville, TN"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grugel", 
            "givenName": "R. N.", 
            "id": "sg:person.013773444133.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773444133.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf03258006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008411572", 
              "https://doi.org/10.1007/bf03258006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02644689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052306889", 
              "https://doi.org/10.1007/bf02644689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02651662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042454976", 
              "https://doi.org/10.1007/bf02651662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00367272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014095363", 
              "https://doi.org/10.1007/bf00367272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02666688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037699727", 
              "https://doi.org/10.1007/bf02666688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021947587", 
              "https://doi.org/10.1007/bf02647504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02657803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006248172", 
              "https://doi.org/10.1007/bf02657803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009645149", 
              "https://doi.org/10.1007/bf02645801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02649742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042325016", 
              "https://doi.org/10.1007/bf02649742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018015450", 
              "https://doi.org/10.1007/bf02645799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033308543", 
              "https://doi.org/10.1007/bf02645796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02668570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021097233", 
              "https://doi.org/10.1007/bf02668570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02644692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043490967", 
              "https://doi.org/10.1007/bf02644692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-46613-7_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044654825", 
              "https://doi.org/10.1007/978-3-642-46613-7_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02660521", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033057425", 
              "https://doi.org/10.1007/bf02660521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02686415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041930090", 
              "https://doi.org/10.1007/bf02686415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02666686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052256041", 
              "https://doi.org/10.1007/bf02666686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026952305", 
              "https://doi.org/10.1007/bf02645818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02644688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001954572", 
              "https://doi.org/10.1007/bf02644688"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-06", 
        "datePublishedReg": "1991-06-01", 
        "description": "The feasibility of solidifying uniformly aligned composites from alloys of hypermonotectic composition was investigated through the use of organic analogues and a directional solidification temperature gradient stage. Previously demonstrated macrostructurally detrimental effects due to coalescence and/or preferential wetting (or lack of) by the excess LII phase have been taken advantage of by the inclusion of constrained fibers aligned parallel to the growth direction. Upon passing through the miscibility gap,LII droplets are shown to attach and grow along the fibers prior to the monotectic reaction, resulting in a uniform composite. The results of different fiber materials in combination with \u201cwetting\u201d and \u201cnonwetting\u201d miscibility gap systems are presented and discussed in reference to processing in a microgravity environment.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02651233", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136775", 
            "issn": [
              "1073-5615", 
              "1543-1916"
            ], 
            "name": "Metallurgical and Materials Transactions B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "keywords": [
          "different fiber materials", 
          "temperature gradient stage", 
          "hypermonotectic alloys", 
          "hypermonotectic compositions", 
          "uniform composite", 
          "miscibility gap system", 
          "composite growth", 
          "fiber materials", 
          "preferential wetting", 
          "monotectic reaction", 
          "microgravity environment", 
          "composites", 
          "alloy", 
          "growth direction", 
          "wetting", 
          "miscibility gap", 
          "gap system", 
          "fibers", 
          "droplets", 
          "coalescence", 
          "materials", 
          "organic analogues", 
          "feasibility", 
          "phase", 
          "advantages", 
          "direction", 
          "detrimental effects", 
          "system", 
          "composition", 
          "results", 
          "parallel", 
          "gap", 
          "environment", 
          "reference", 
          "combination", 
          "effect", 
          "use", 
          "reaction", 
          "stage", 
          "inclusion", 
          "growth", 
          "analogues"
        ], 
        "name": "Composite growth in hypermonotectic alloys", 
        "pagination": "339-348", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009547541"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02651233"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02651233", 
          "https://app.dimensions.ai/details/publication/pub.1009547541"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T21:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_221.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02651233"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02651233'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02651233'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02651233'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02651233'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      22 PREDICATES      87 URIs      60 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02651233 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nbcd8ec26df4442df80ad2786659691f5
    4 schema:citation sg:pub.10.1007/978-3-642-46613-7_15
    5 sg:pub.10.1007/bf00367272
    6 sg:pub.10.1007/bf02644688
    7 sg:pub.10.1007/bf02644689
    8 sg:pub.10.1007/bf02644692
    9 sg:pub.10.1007/bf02645796
    10 sg:pub.10.1007/bf02645799
    11 sg:pub.10.1007/bf02645801
    12 sg:pub.10.1007/bf02645818
    13 sg:pub.10.1007/bf02647504
    14 sg:pub.10.1007/bf02649742
    15 sg:pub.10.1007/bf02651662
    16 sg:pub.10.1007/bf02657803
    17 sg:pub.10.1007/bf02660521
    18 sg:pub.10.1007/bf02666686
    19 sg:pub.10.1007/bf02666688
    20 sg:pub.10.1007/bf02668570
    21 sg:pub.10.1007/bf02686415
    22 sg:pub.10.1007/bf03258006
    23 schema:datePublished 1991-06
    24 schema:datePublishedReg 1991-06-01
    25 schema:description The feasibility of solidifying uniformly aligned composites from alloys of hypermonotectic composition was investigated through the use of organic analogues and a directional solidification temperature gradient stage. Previously demonstrated macrostructurally detrimental effects due to coalescence and/or preferential wetting (or lack of) by the excess LII phase have been taken advantage of by the inclusion of constrained fibers aligned parallel to the growth direction. Upon passing through the miscibility gap,LII droplets are shown to attach and grow along the fibers prior to the monotectic reaction, resulting in a uniform composite. The results of different fiber materials in combination with “wetting” and “nonwetting” miscibility gap systems are presented and discussed in reference to processing in a microgravity environment.
    26 schema:genre article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N1b351c52ef324b18ba21cf727cd05035
    30 Nba86201a5c2446f6bacec306feec259b
    31 sg:journal.1136775
    32 schema:keywords advantages
    33 alloy
    34 analogues
    35 coalescence
    36 combination
    37 composite growth
    38 composites
    39 composition
    40 detrimental effects
    41 different fiber materials
    42 direction
    43 droplets
    44 effect
    45 environment
    46 feasibility
    47 fiber materials
    48 fibers
    49 gap
    50 gap system
    51 growth
    52 growth direction
    53 hypermonotectic alloys
    54 hypermonotectic compositions
    55 inclusion
    56 materials
    57 microgravity environment
    58 miscibility gap
    59 miscibility gap system
    60 monotectic reaction
    61 organic analogues
    62 parallel
    63 phase
    64 preferential wetting
    65 reaction
    66 reference
    67 results
    68 stage
    69 system
    70 temperature gradient stage
    71 uniform composite
    72 use
    73 wetting
    74 schema:name Composite growth in hypermonotectic alloys
    75 schema:pagination 339-348
    76 schema:productId Nf46028c96579453382079c36d6015d1d
    77 Nf7442e1842c44adb948e61076918b49a
    78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009547541
    79 https://doi.org/10.1007/bf02651233
    80 schema:sdDatePublished 2022-06-01T21:59
    81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    82 schema:sdPublisher Nf8eaa9275f284324bd3535f3f1c5a807
    83 schema:url https://doi.org/10.1007/bf02651233
    84 sgo:license sg:explorer/license/
    85 sgo:sdDataset articles
    86 rdf:type schema:ScholarlyArticle
    87 N1b351c52ef324b18ba21cf727cd05035 schema:issueNumber 3
    88 rdf:type schema:PublicationIssue
    89 Nba86201a5c2446f6bacec306feec259b schema:volumeNumber 22
    90 rdf:type schema:PublicationVolume
    91 Nbcd8ec26df4442df80ad2786659691f5 rdf:first sg:person.013773444133.30
    92 rdf:rest rdf:nil
    93 Nf46028c96579453382079c36d6015d1d schema:name doi
    94 schema:value 10.1007/bf02651233
    95 rdf:type schema:PropertyValue
    96 Nf7442e1842c44adb948e61076918b49a schema:name dimensions_id
    97 schema:value pub.1009547541
    98 rdf:type schema:PropertyValue
    99 Nf8eaa9275f284324bd3535f3f1c5a807 schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Engineering
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Materials Engineering
    106 rdf:type schema:DefinedTerm
    107 sg:journal.1136775 schema:issn 1073-5615
    108 1543-1916
    109 schema:name Metallurgical and Materials Transactions B
    110 schema:publisher Springer Nature
    111 rdf:type schema:Periodical
    112 sg:person.013773444133.30 schema:affiliation grid-institutes:grid.152326.1
    113 schema:familyName Grugel
    114 schema:givenName R. N.
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773444133.30
    116 rdf:type schema:Person
    117 sg:pub.10.1007/978-3-642-46613-7_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044654825
    118 https://doi.org/10.1007/978-3-642-46613-7_15
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/bf00367272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014095363
    121 https://doi.org/10.1007/bf00367272
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf02644688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001954572
    124 https://doi.org/10.1007/bf02644688
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf02644689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052306889
    127 https://doi.org/10.1007/bf02644689
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf02644692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043490967
    130 https://doi.org/10.1007/bf02644692
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/bf02645796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033308543
    133 https://doi.org/10.1007/bf02645796
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/bf02645799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018015450
    136 https://doi.org/10.1007/bf02645799
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/bf02645801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009645149
    139 https://doi.org/10.1007/bf02645801
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/bf02645818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026952305
    142 https://doi.org/10.1007/bf02645818
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/bf02647504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021947587
    145 https://doi.org/10.1007/bf02647504
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/bf02649742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042325016
    148 https://doi.org/10.1007/bf02649742
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/bf02651662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042454976
    151 https://doi.org/10.1007/bf02651662
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/bf02657803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006248172
    154 https://doi.org/10.1007/bf02657803
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/bf02660521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033057425
    157 https://doi.org/10.1007/bf02660521
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf02666686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052256041
    160 https://doi.org/10.1007/bf02666686
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf02666688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037699727
    163 https://doi.org/10.1007/bf02666688
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/bf02668570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021097233
    166 https://doi.org/10.1007/bf02668570
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bf02686415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041930090
    169 https://doi.org/10.1007/bf02686415
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/bf03258006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008411572
    172 https://doi.org/10.1007/bf03258006
    173 rdf:type schema:CreativeWork
    174 grid-institutes:grid.152326.1 schema:alternateName Department of Materials Science and Engineering, Center for Micro- gravity Research and Applications, Vanderbilt University, 37235, Nashville, TN
    175 schema:name Department of Materials Science and Engineering, Center for Micro- gravity Research and Applications, Vanderbilt University, 37235, Nashville, TN
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...