Statistical analysis of the disorder of two-dimensional cellular arrays in directional solidification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-12

AUTHORS

B. Billia, H. Jamgotchian, H. Nguyen Thi

ABSTRACT

By introducing a weighted Wigner-Seitz construction and, for the first time in directional solidification, using the minimal spanning tree (MST) approach and the (m,σ)-diagram, the statistical analysis of the topological defects and disorder of two-dimensional (2-D) cellular arrays has been carried out. For “standard” growth of massive Pb-30 wt pct Tl alloys, the underlying honeycomb has been brought out, which was rather unexpected, as the percentage of defects is so high that the cellular arrays are “melted” by the defects, with a structure close to that of a 2-D liquid. Furthermore, disorder can be described by a Gaussian noise applied on an array of hexagonal cells, Lewis's law is satisfied, and for a sufficiently large number of cells, a peak is evidenced in the primary spacing distribution, which indicates that, in some way, the cell size is selected. Nevertheless, the associated standard deviation is rather large. It is conceivable that the defects can have a leading role in the selection of the primary spacing. More... »

PAGES

3041-3050

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02650265

DOI

http://dx.doi.org/10.1007/bf02650265

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037629878


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "the Laboratoire de Physique Cristalline de l'URA CNRS 797, Universit\u00e9 d'Aix-Marseille III, 13397, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "the Laboratoire de Physique Cristalline de l'URA CNRS 797, Universit\u00e9 d'Aix-Marseille III, 13397, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Billia", 
        "givenName": "B.", 
        "id": "sg:person.012656550563.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012656550563.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Laboratoire de Physique Cristalline de l'URA CNRS 797, Universit\u00e9 d'Aix-Marseille III, 13397, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "the Laboratoire de Physique Cristalline de l'URA CNRS 797, Universit\u00e9 d'Aix-Marseille III, 13397, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jamgotchian", 
        "givenName": "H.", 
        "id": "sg:person.01243075633.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243075633.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Laboratoire de Physique Cristalline de l'URA CNRS 797, Universit\u00e9 d'Aix-Marseille III, 13397, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "the Laboratoire de Physique Cristalline de l'URA CNRS 797, Universit\u00e9 d'Aix-Marseille III, 13397, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen Thi", 
        "givenName": "H.", 
        "id": "sg:person.07736761763.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07736761763.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1991-12", 
    "datePublishedReg": "1991-12-01", 
    "description": "By introducing a weighted Wigner-Seitz construction and, for the first time in directional solidification, using the minimal spanning tree (MST) approach and the (m,\u03c3)-diagram, the statistical analysis of the topological defects and disorder of two-dimensional (2-D) cellular arrays has been carried out. For \u201cstandard\u201d growth of massive Pb-30 wt pct Tl alloys, the underlying honeycomb has been brought out, which was rather unexpected, as the percentage of defects is so high that the cellular arrays are \u201cmelted\u201d by the defects, with a structure close to that of a 2-D liquid. Furthermore, disorder can be described by a Gaussian noise applied on an array of hexagonal cells, Lewis's law is satisfied, and for a sufficiently large number of cells, a peak is evidenced in the primary spacing distribution, which indicates that, in some way, the cell size is selected. Nevertheless, the associated standard deviation is rather large. It is conceivable that the defects can have a leading role in the selection of the primary spacing.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02650265", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "cell size", 
      "cells", 
      "defects", 
      "cellular arrays", 
      "two-dimensional cellular arrays", 
      "first time", 
      "large number", 
      "growth", 
      "array", 
      "role", 
      "selection", 
      "analysis", 
      "tree approach", 
      "disorders", 
      "structure", 
      "distribution", 
      "number", 
      "leading role", 
      "size", 
      "statistical analysis", 
      "percentage", 
      "Lewis' law", 
      "Tl", 
      "hexagonal cells", 
      "approach", 
      "time", 
      "peak", 
      "construction", 
      "way", 
      "spacing", 
      "minimal spanning tree (MST) approach", 
      "spacing distribution", 
      "Gaussian noise", 
      "topological defects", 
      "percentage of defects", 
      "deviation", 
      "law", 
      "noise", 
      "honeycomb", 
      "standard deviation", 
      "liquid", 
      "primary spacing", 
      "solidification", 
      "directional solidification", 
      "Pb-30", 
      "Wigner-Seitz construction", 
      "spanning tree (MST) approach", 
      "massive Pb-30", 
      "underlying honeycomb", 
      "primary spacing distribution"
    ], 
    "name": "Statistical analysis of the disorder of two-dimensional cellular arrays in directional solidification", 
    "pagination": "3041-3050", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037629878"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02650265"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02650265", 
      "https://app.dimensions.ai/details/publication/pub.1037629878"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_240.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02650265"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02650265'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02650265'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02650265'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02650265'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      79 URIs      68 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02650265 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 anzsrc-for:0913
6 schema:author N5bee71368a2147389b2e521ac10f1972
7 schema:datePublished 1991-12
8 schema:datePublishedReg 1991-12-01
9 schema:description By introducing a weighted Wigner-Seitz construction and, for the first time in directional solidification, using the minimal spanning tree (MST) approach and the (m,σ)-diagram, the statistical analysis of the topological defects and disorder of two-dimensional (2-D) cellular arrays has been carried out. For “standard” growth of massive Pb-30 wt pct Tl alloys, the underlying honeycomb has been brought out, which was rather unexpected, as the percentage of defects is so high that the cellular arrays are “melted” by the defects, with a structure close to that of a 2-D liquid. Furthermore, disorder can be described by a Gaussian noise applied on an array of hexagonal cells, Lewis's law is satisfied, and for a sufficiently large number of cells, a peak is evidenced in the primary spacing distribution, which indicates that, in some way, the cell size is selected. Nevertheless, the associated standard deviation is rather large. It is conceivable that the defects can have a leading role in the selection of the primary spacing.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Ncba7ba42cc354dccbcacb122e40f156a
14 Ndb05ab5dad8f4b8e8509cc03a95c1d74
15 sg:journal.1136292
16 schema:keywords Gaussian noise
17 Lewis' law
18 Pb-30
19 Tl
20 Wigner-Seitz construction
21 analysis
22 approach
23 array
24 cell size
25 cells
26 cellular arrays
27 construction
28 defects
29 deviation
30 directional solidification
31 disorders
32 distribution
33 first time
34 growth
35 hexagonal cells
36 honeycomb
37 large number
38 law
39 leading role
40 liquid
41 massive Pb-30
42 minimal spanning tree (MST) approach
43 noise
44 number
45 peak
46 percentage
47 percentage of defects
48 primary spacing
49 primary spacing distribution
50 role
51 selection
52 size
53 solidification
54 spacing
55 spacing distribution
56 spanning tree (MST) approach
57 standard deviation
58 statistical analysis
59 structure
60 time
61 topological defects
62 tree approach
63 two-dimensional cellular arrays
64 underlying honeycomb
65 way
66 schema:name Statistical analysis of the disorder of two-dimensional cellular arrays in directional solidification
67 schema:pagination 3041-3050
68 schema:productId N514fff2003594f4194a7364f02d559cb
69 Nd8f9295cf20d46fd969e9ea79a2a35e5
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037629878
71 https://doi.org/10.1007/bf02650265
72 schema:sdDatePublished 2021-12-01T19:08
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N58f01b3539e647078084189243fff261
75 schema:url https://doi.org/10.1007/bf02650265
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N146187228e91438b81ac2d6150491bff rdf:first sg:person.07736761763.30
80 rdf:rest rdf:nil
81 N514fff2003594f4194a7364f02d559cb schema:name dimensions_id
82 schema:value pub.1037629878
83 rdf:type schema:PropertyValue
84 N58f01b3539e647078084189243fff261 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N5bee71368a2147389b2e521ac10f1972 rdf:first sg:person.012656550563.23
87 rdf:rest Nde955e515d3049cd8e1adf585927f1ca
88 Ncba7ba42cc354dccbcacb122e40f156a schema:volumeNumber 22
89 rdf:type schema:PublicationVolume
90 Nd8f9295cf20d46fd969e9ea79a2a35e5 schema:name doi
91 schema:value 10.1007/bf02650265
92 rdf:type schema:PropertyValue
93 Ndb05ab5dad8f4b8e8509cc03a95c1d74 schema:issueNumber 12
94 rdf:type schema:PublicationIssue
95 Nde955e515d3049cd8e1adf585927f1ca rdf:first sg:person.01243075633.75
96 rdf:rest N146187228e91438b81ac2d6150491bff
97 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
98 schema:name Chemical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Chemistry (incl. Structural)
102 rdf:type schema:DefinedTerm
103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
104 schema:name Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
107 schema:name Materials Engineering
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
110 schema:name Mechanical Engineering
111 rdf:type schema:DefinedTerm
112 sg:journal.1136292 schema:issn 1073-5623
113 1543-1940
114 schema:name Metallurgical and Materials Transactions A
115 schema:publisher Springer Nature
116 rdf:type schema:Periodical
117 sg:person.01243075633.75 schema:affiliation grid-institutes:grid.5399.6
118 schema:familyName Jamgotchian
119 schema:givenName H.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243075633.75
121 rdf:type schema:Person
122 sg:person.012656550563.23 schema:affiliation grid-institutes:grid.5399.6
123 schema:familyName Billia
124 schema:givenName B.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012656550563.23
126 rdf:type schema:Person
127 sg:person.07736761763.30 schema:affiliation grid-institutes:grid.5399.6
128 schema:familyName Nguyen Thi
129 schema:givenName H.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07736761763.30
131 rdf:type schema:Person
132 grid-institutes:grid.5399.6 schema:alternateName the Laboratoire de Physique Cristalline de l'URA CNRS 797, Université d'Aix-Marseille III, 13397, Marseille, France
133 schema:name the Laboratoire de Physique Cristalline de l'URA CNRS 797, Université d'Aix-Marseille III, 13397, Marseille, France
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...