Prediction of grain structures in various solidification processes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-03

AUTHORS

M. Rappaz, Ch A. Gandin, J. L. Desbiolles, Ph. Thévoz

ABSTRACT

Grain structure formation during solidification can be simulatedvia the use of stochastic models providing the physical mechanisms of nucleation and dendrite growth are accounted for. With this goal in mind, a physically based cellular automaton (CA) model has been coupled with finite element (FE) heat flow computations and implemented into the code3- MOS. The CA enmeshment of the solidifying domain with small square cells is first generated automatically from the FE mesh. Within each time-step, the variation of enthalpy at each node of the FE mesh is calculated using an implicit scheme and a Newton-type linearization method. After interpolation of the explicit temperature and of the enthalpy variation at the cell location, the nucleation and growth of grains are simulated using the CA algorithm. This algorithm accounts for the heterogeneous nucleation in the bulk and at the surface of the ingot, for the growth and preferential growth directions of the dendrites, and for microsegregation. The variations of volume fraction of solid at the cell location are then summed up at the FE nodes in order to find the new temperatures. This CAFE model, which allows the prediction and the visualization of grain structures during and after solidification, is applied to various solidification processes: the investment casting of turbine blades, the continuous casting of rods, and the laser remelting or welding of plates. Because the CAFE model is yet two-dimensional (2-D), the simulation results are compared in a qualitative way with experimental findings. More... »

PAGES

695-705

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02648956

DOI

http://dx.doi.org/10.1007/bf02648956

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033404338


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "D\u00e9partement des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Laboratoire de M\u00e9tallurgie Physique, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "D\u00e9partement des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Laboratoire de M\u00e9tallurgie Physique, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaz", 
        "givenName": "M.", 
        "id": "sg:person.013657516157.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "D\u00e9partement des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Laboratoire de M\u00e9tallurgie Physique, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "D\u00e9partement des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Laboratoire de M\u00e9tallurgie Physique, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gandin", 
        "givenName": "Ch A.", 
        "id": "sg:person.010332710054.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332710054.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "D\u00e9partement des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Laboratoire de M\u00e9tallurgie Physique, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "D\u00e9partement des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Laboratoire de M\u00e9tallurgie Physique, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desbiolles", 
        "givenName": "J. L.", 
        "id": "sg:person.011355726671.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355726671.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Calcom SA, CH-1015, Lausanne, PSE, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.433079.a", 
          "name": [
            "Calcom SA, CH-1015, Lausanne, PSE, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Th\u00e9voz", 
        "givenName": "Ph.", 
        "id": "sg:person.014717560262.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717560262.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02651604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001291895", 
          "https://doi.org/10.1007/bf02651604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02644688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001954572", 
          "https://doi.org/10.1007/bf02644688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02647605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008404524", 
          "https://doi.org/10.1007/bf02647605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02657334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035268094", 
          "https://doi.org/10.1007/bf02657334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02647249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015246123", 
          "https://doi.org/10.1007/bf02647249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-9506-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043637086", 
          "https://doi.org/10.1007/978-94-010-9506-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/s0883769400038811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067962964", 
          "https://doi.org/10.1557/s0883769400038811"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-03", 
    "datePublishedReg": "1996-03-01", 
    "description": "Grain structure formation during solidification can be simulatedvia the use of stochastic models providing the physical mechanisms of nucleation and dendrite growth are accounted for. With this goal in mind, a physically based cellular automaton (CA) model has been coupled with finite element (FE) heat flow computations and implemented into the code3- MOS. The CA enmeshment of the solidifying domain with small square cells is first generated automatically from the FE mesh. Within each time-step, the variation of enthalpy at each node of the FE mesh is calculated using an implicit scheme and a Newton-type linearization method. After interpolation of the explicit temperature and of the enthalpy variation at the cell location, the nucleation and growth of grains are simulated using the CA algorithm. This algorithm accounts for the heterogeneous nucleation in the bulk and at the surface of the ingot, for the growth and preferential growth directions of the dendrites, and for microsegregation. The variations of volume fraction of solid at the cell location are then summed up at the FE nodes in order to find the new temperatures. This CAFE model, which allows the prediction and the visualization of grain structures during and after solidification, is applied to various solidification processes: the investment casting of turbine blades, the continuous casting of rods, and the laser remelting or welding of plates. Because the CAFE model is yet two-dimensional (2-D), the simulation results are compared in a qualitative way with experimental findings.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02648956", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "grain structure", 
      "solidification process", 
      "FE mesh", 
      "CAFE model", 
      "welding of plates", 
      "grain structure formation", 
      "heat flow computations", 
      "growth of grains", 
      "laser remelting", 
      "turbine blades", 
      "continuous casting", 
      "investment casting", 
      "FE nodes", 
      "preferential growth direction", 
      "volume fraction", 
      "flow computations", 
      "linearization method", 
      "heterogeneous nucleation", 
      "simulation results", 
      "casting", 
      "solidification", 
      "physical mechanisms", 
      "growth direction", 
      "implicit scheme", 
      "nucleation", 
      "small square cells", 
      "square cells", 
      "new temperature", 
      "structure formation", 
      "variation of enthalpy", 
      "cellular automata model", 
      "temperature", 
      "welding", 
      "mesh", 
      "enthalpy variation", 
      "experimental findings", 
      "explicit temperature", 
      "ingots", 
      "remelting", 
      "microsegregation", 
      "blades", 
      "automata model", 
      "prediction", 
      "plate", 
      "stochastic model", 
      "surface", 
      "structure", 
      "model", 
      "process", 
      "grains", 
      "cell location", 
      "rods", 
      "algorithm", 
      "bulk", 
      "CA algorithm", 
      "variation", 
      "interpolation", 
      "qualitative way", 
      "location", 
      "scheme", 
      "direction", 
      "enthalpy", 
      "method", 
      "order", 
      "computation", 
      "growth", 
      "fraction", 
      "nodes", 
      "formation", 
      "results", 
      "visualization", 
      "dendrites", 
      "use", 
      "mechanism", 
      "way", 
      "domain", 
      "goal", 
      "enmeshment", 
      "cells", 
      "mind", 
      "findings"
    ], 
    "name": "Prediction of grain structures in various solidification processes", 
    "pagination": "695-705", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033404338"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02648956"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02648956", 
      "https://app.dimensions.ai/details/publication/pub.1033404338"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_289.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02648956"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02648956'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02648956'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02648956'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02648956'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      116 URIs      98 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02648956 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 anzsrc-for:0913
6 schema:author Nfb668c43a14c40f88d032b9113ce5047
7 schema:citation sg:pub.10.1007/978-94-010-9506-8
8 sg:pub.10.1007/bf02644688
9 sg:pub.10.1007/bf02647249
10 sg:pub.10.1007/bf02647605
11 sg:pub.10.1007/bf02651604
12 sg:pub.10.1007/bf02657334
13 sg:pub.10.1557/s0883769400038811
14 schema:datePublished 1996-03
15 schema:datePublishedReg 1996-03-01
16 schema:description Grain structure formation during solidification can be simulatedvia the use of stochastic models providing the physical mechanisms of nucleation and dendrite growth are accounted for. With this goal in mind, a physically based cellular automaton (CA) model has been coupled with finite element (FE) heat flow computations and implemented into the code3- MOS. The CA enmeshment of the solidifying domain with small square cells is first generated automatically from the FE mesh. Within each time-step, the variation of enthalpy at each node of the FE mesh is calculated using an implicit scheme and a Newton-type linearization method. After interpolation of the explicit temperature and of the enthalpy variation at the cell location, the nucleation and growth of grains are simulated using the CA algorithm. This algorithm accounts for the heterogeneous nucleation in the bulk and at the surface of the ingot, for the growth and preferential growth directions of the dendrites, and for microsegregation. The variations of volume fraction of solid at the cell location are then summed up at the FE nodes in order to find the new temperatures. This CAFE model, which allows the prediction and the visualization of grain structures during and after solidification, is applied to various solidification processes: the investment casting of turbine blades, the continuous casting of rods, and the laser remelting or welding of plates. Because the CAFE model is yet two-dimensional (2-D), the simulation results are compared in a qualitative way with experimental findings.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N159eaf355a8f483396f9a3baaaf68cf4
20 Nbc9b6addee444b2695e3cec77f713060
21 sg:journal.1136292
22 schema:keywords CA algorithm
23 CAFE model
24 FE mesh
25 FE nodes
26 algorithm
27 automata model
28 blades
29 bulk
30 casting
31 cell location
32 cells
33 cellular automata model
34 computation
35 continuous casting
36 dendrites
37 direction
38 domain
39 enmeshment
40 enthalpy
41 enthalpy variation
42 experimental findings
43 explicit temperature
44 findings
45 flow computations
46 formation
47 fraction
48 goal
49 grain structure
50 grain structure formation
51 grains
52 growth
53 growth direction
54 growth of grains
55 heat flow computations
56 heterogeneous nucleation
57 implicit scheme
58 ingots
59 interpolation
60 investment casting
61 laser remelting
62 linearization method
63 location
64 mechanism
65 mesh
66 method
67 microsegregation
68 mind
69 model
70 new temperature
71 nodes
72 nucleation
73 order
74 physical mechanisms
75 plate
76 prediction
77 preferential growth direction
78 process
79 qualitative way
80 remelting
81 results
82 rods
83 scheme
84 simulation results
85 small square cells
86 solidification
87 solidification process
88 square cells
89 stochastic model
90 structure
91 structure formation
92 surface
93 temperature
94 turbine blades
95 use
96 variation
97 variation of enthalpy
98 visualization
99 volume fraction
100 way
101 welding
102 welding of plates
103 schema:name Prediction of grain structures in various solidification processes
104 schema:pagination 695-705
105 schema:productId N4428b8fe9d2942a385743f531e3a6396
106 Na054ea4b42ea4e50b46f9437e3556481
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033404338
108 https://doi.org/10.1007/bf02648956
109 schema:sdDatePublished 2022-08-04T16:53
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N1be3de76ecc841be97a3311728261f7a
112 schema:url https://doi.org/10.1007/bf02648956
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N159eaf355a8f483396f9a3baaaf68cf4 schema:issueNumber 3
117 rdf:type schema:PublicationIssue
118 N1afe124071fd4640a0f467419141c5bd rdf:first sg:person.014717560262.48
119 rdf:rest rdf:nil
120 N1be3de76ecc841be97a3311728261f7a schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 N4428b8fe9d2942a385743f531e3a6396 schema:name dimensions_id
123 schema:value pub.1033404338
124 rdf:type schema:PropertyValue
125 N6a93b5e446e54a4d8a8e3829b2cd593e rdf:first sg:person.011355726671.24
126 rdf:rest N1afe124071fd4640a0f467419141c5bd
127 Na054ea4b42ea4e50b46f9437e3556481 schema:name doi
128 schema:value 10.1007/bf02648956
129 rdf:type schema:PropertyValue
130 Nbc9b6addee444b2695e3cec77f713060 schema:volumeNumber 27
131 rdf:type schema:PublicationVolume
132 Nd613310331a6407bae3570b2b5e7167b rdf:first sg:person.010332710054.26
133 rdf:rest N6a93b5e446e54a4d8a8e3829b2cd593e
134 Nfb668c43a14c40f88d032b9113ce5047 rdf:first sg:person.013657516157.10
135 rdf:rest Nd613310331a6407bae3570b2b5e7167b
136 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
137 schema:name Chemical Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
140 schema:name Physical Chemistry (incl. Structural)
141 rdf:type schema:DefinedTerm
142 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
143 schema:name Engineering
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
146 schema:name Materials Engineering
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
149 schema:name Mechanical Engineering
150 rdf:type schema:DefinedTerm
151 sg:journal.1136292 schema:issn 1073-5623
152 1543-1940
153 schema:name Metallurgical and Materials Transactions A
154 schema:publisher Springer Nature
155 rdf:type schema:Periodical
156 sg:person.010332710054.26 schema:affiliation grid-institutes:grid.5333.6
157 schema:familyName Gandin
158 schema:givenName Ch A.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332710054.26
160 rdf:type schema:Person
161 sg:person.011355726671.24 schema:affiliation grid-institutes:grid.5333.6
162 schema:familyName Desbiolles
163 schema:givenName J. L.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355726671.24
165 rdf:type schema:Person
166 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
167 schema:familyName Rappaz
168 schema:givenName M.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
170 rdf:type schema:Person
171 sg:person.014717560262.48 schema:affiliation grid-institutes:grid.433079.a
172 schema:familyName Thévoz
173 schema:givenName Ph.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717560262.48
175 rdf:type schema:Person
176 sg:pub.10.1007/978-94-010-9506-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043637086
177 https://doi.org/10.1007/978-94-010-9506-8
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/bf02644688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001954572
180 https://doi.org/10.1007/bf02644688
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/bf02647249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015246123
183 https://doi.org/10.1007/bf02647249
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/bf02647605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008404524
186 https://doi.org/10.1007/bf02647605
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/bf02651604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001291895
189 https://doi.org/10.1007/bf02651604
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/bf02657334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035268094
192 https://doi.org/10.1007/bf02657334
193 rdf:type schema:CreativeWork
194 sg:pub.10.1557/s0883769400038811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067962964
195 https://doi.org/10.1557/s0883769400038811
196 rdf:type schema:CreativeWork
197 grid-institutes:grid.433079.a schema:alternateName Calcom SA, CH-1015, Lausanne, PSE, Switzerland
198 schema:name Calcom SA, CH-1015, Lausanne, PSE, Switzerland
199 rdf:type schema:Organization
200 grid-institutes:grid.5333.6 schema:alternateName Département des Matériaux, Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Métallurgie Physique, CH-1015, Lausanne, Switzerland
201 schema:name Département des Matériaux, Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Métallurgie Physique, CH-1015, Lausanne, Switzerland
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...