Numerical modeling of cellular/dendritic array growth: spacing and structure predictions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-03

AUTHORS

J. D. Hunt, S. Z. Lu

ABSTRACT

A numerical model of cellular and dendritic growth has been developed that can predict cellular and dendritic spacings, undercoolings, and the transition between structures. Fully self-consistent solutions are produced for axisymmetric interface shapes. An important feature of the model is that the spacing selection mechanism has been treated. A small, stable range of spacings is predicted for both cells and dendrites, and these agree well with experiment at both low and high velocities. By suitable nondimensionalization, relatively simple analytic expressions can be used to fit the numerical results. These expressions provide an insight into the cellular and dendritic growth processes and are useful for comparing theory with experiment. More... »

PAGES

611-623

References to SciGraph publications

  • 1984-06-01. Interdendritic Spacing: Part I. Experimental Studies in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02648950

    DOI

    http://dx.doi.org/10.1007/bf02648950

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017285906


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Materials, Oxford University, 0X13PH, Oxford, England", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Materials, Oxford University, 0X13PH, Oxford, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hunt", 
            "givenName": "J. D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Michigan Technological University, 49331, Houghton, MI", 
              "id": "http://www.grid.ac/institutes/grid.259979.9", 
              "name": [
                "Michigan Technological University, 49331, Houghton, MI"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "S. Z.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02644688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001954572", 
              "https://doi.org/10.1007/bf02644688"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1996-03", 
        "datePublishedReg": "1996-03-01", 
        "description": "A numerical model of cellular and dendritic growth has been developed that can predict cellular and dendritic spacings, undercoolings, and the transition between structures. Fully self-consistent solutions are produced for axisymmetric interface shapes. An important feature of the model is that the spacing selection mechanism has been treated. A small, stable range of spacings is predicted for both cells and dendrites, and these agree well with experiment at both low and high velocities. By suitable nondimensionalization, relatively simple analytic expressions can be used to fit the numerical results. These expressions provide an insight into the cellular and dendritic growth processes and are useful for comparing theory with experiment.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02648950", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "keywords": [
          "dendritic growth", 
          "cells", 
          "dendrites", 
          "expression", 
          "model", 
          "growth", 
          "self-consistent solution", 
          "important features", 
          "features", 
          "mechanism", 
          "simple analytic expression", 
          "results", 
          "numerical model", 
          "dendritic spacing", 
          "spacing", 
          "undercooling", 
          "transition", 
          "structure", 
          "interface shape", 
          "shape", 
          "selection mechanism", 
          "stable range", 
          "range", 
          "experiments", 
          "high velocity", 
          "velocity", 
          "nondimensionalization", 
          "analytic expressions", 
          "numerical results", 
          "insights", 
          "dendritic growth process", 
          "growth process", 
          "process", 
          "theory", 
          "numerical modeling", 
          "array growth", 
          "prediction", 
          "solution", 
          "modeling", 
          "structure prediction", 
          "axisymmetric interface shapes", 
          "spacing selection mechanism", 
          "suitable nondimensionalization", 
          "Dendritic array growth"
        ], 
        "name": "Numerical modeling of cellular/dendritic array growth: spacing and structure predictions", 
        "pagination": "611-623", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017285906"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02648950"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02648950", 
          "https://app.dimensions.ai/details/publication/pub.1017285906"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_285.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02648950"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02648950'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02648950'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02648950'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02648950'


     

    This table displays all metadata directly associated to this object as RDF triples.

    114 TRIPLES      22 PREDICATES      71 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02648950 schema:about anzsrc-for:09
    2 anzsrc-for:0905
    3 schema:author Ne7175b052c4d4603a6930b1d2aa00b26
    4 schema:citation sg:pub.10.1007/bf02644688
    5 schema:datePublished 1996-03
    6 schema:datePublishedReg 1996-03-01
    7 schema:description A numerical model of cellular and dendritic growth has been developed that can predict cellular and dendritic spacings, undercoolings, and the transition between structures. Fully self-consistent solutions are produced for axisymmetric interface shapes. An important feature of the model is that the spacing selection mechanism has been treated. A small, stable range of spacings is predicted for both cells and dendrites, and these agree well with experiment at both low and high velocities. By suitable nondimensionalization, relatively simple analytic expressions can be used to fit the numerical results. These expressions provide an insight into the cellular and dendritic growth processes and are useful for comparing theory with experiment.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N8a138c31a64345a583977023537312b1
    12 Nb0e4e2cadc8f49d08cc0c5d3911be3a0
    13 sg:journal.1136292
    14 schema:keywords Dendritic array growth
    15 analytic expressions
    16 array growth
    17 axisymmetric interface shapes
    18 cells
    19 dendrites
    20 dendritic growth
    21 dendritic growth process
    22 dendritic spacing
    23 experiments
    24 expression
    25 features
    26 growth
    27 growth process
    28 high velocity
    29 important features
    30 insights
    31 interface shape
    32 mechanism
    33 model
    34 modeling
    35 nondimensionalization
    36 numerical model
    37 numerical modeling
    38 numerical results
    39 prediction
    40 process
    41 range
    42 results
    43 selection mechanism
    44 self-consistent solution
    45 shape
    46 simple analytic expression
    47 solution
    48 spacing
    49 spacing selection mechanism
    50 stable range
    51 structure
    52 structure prediction
    53 suitable nondimensionalization
    54 theory
    55 transition
    56 undercooling
    57 velocity
    58 schema:name Numerical modeling of cellular/dendritic array growth: spacing and structure predictions
    59 schema:pagination 611-623
    60 schema:productId N962ec26e91344840ad76a66685fd1713
    61 Nf24d0caeaec84a19869e7a6d188de900
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017285906
    63 https://doi.org/10.1007/bf02648950
    64 schema:sdDatePublished 2021-12-01T19:10
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher N86da9957dcf94877aea1bbd317da4b61
    67 schema:url https://doi.org/10.1007/bf02648950
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N02ba1dfa440e4bfaa76ac7e9b2016fdc schema:affiliation grid-institutes:grid.4991.5
    72 schema:familyName Hunt
    73 schema:givenName J. D.
    74 rdf:type schema:Person
    75 N3febf9e9de5c49fc8dbef58131b67e54 schema:affiliation grid-institutes:grid.259979.9
    76 schema:familyName Lu
    77 schema:givenName S. Z.
    78 rdf:type schema:Person
    79 N86da9957dcf94877aea1bbd317da4b61 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 N8a138c31a64345a583977023537312b1 schema:volumeNumber 27
    82 rdf:type schema:PublicationVolume
    83 N962ec26e91344840ad76a66685fd1713 schema:name doi
    84 schema:value 10.1007/bf02648950
    85 rdf:type schema:PropertyValue
    86 Nb0e4e2cadc8f49d08cc0c5d3911be3a0 schema:issueNumber 3
    87 rdf:type schema:PublicationIssue
    88 Nb1db9ce1f11d45a9bebfb96441957b9d rdf:first N3febf9e9de5c49fc8dbef58131b67e54
    89 rdf:rest rdf:nil
    90 Ne7175b052c4d4603a6930b1d2aa00b26 rdf:first N02ba1dfa440e4bfaa76ac7e9b2016fdc
    91 rdf:rest Nb1db9ce1f11d45a9bebfb96441957b9d
    92 Nf24d0caeaec84a19869e7a6d188de900 schema:name dimensions_id
    93 schema:value pub.1017285906
    94 rdf:type schema:PropertyValue
    95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Engineering
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Civil Engineering
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1136292 schema:issn 1073-5623
    102 1543-1940
    103 schema:name Metallurgical and Materials Transactions A
    104 schema:publisher Springer Nature
    105 rdf:type schema:Periodical
    106 sg:pub.10.1007/bf02644688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001954572
    107 https://doi.org/10.1007/bf02644688
    108 rdf:type schema:CreativeWork
    109 grid-institutes:grid.259979.9 schema:alternateName Michigan Technological University, 49331, Houghton, MI
    110 schema:name Michigan Technological University, 49331, Houghton, MI
    111 rdf:type schema:Organization
    112 grid-institutes:grid.4991.5 schema:alternateName Department of Materials, Oxford University, 0X13PH, Oxford, England
    113 schema:name Department of Materials, Oxford University, 0X13PH, Oxford, England
    114 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...