A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-11

AUTHORS

D. R. Poirier, K. Yeum, A. L. Maples

ABSTRACT

A computer model is used to predict the formation and the amount of microporosity in directionally solidified Al-4.5 wt pct Cu alloy. The model considers the interplay between so-called “solidification shrinkage” and “gas porosity” that are often thought to be two contributing and different causes of interdendritic porosity. There is an accounting of the alloy element, Cu, and of dissolved hydrogen in the solid- and liquid-phase during solidification. Consistent with thermodynamics, therefore, a prediction of forming the gas-phase in the interdendritic liquid is made. The local pressure within the interdendritic liquid is calculated by macrosegregation theory that considers the convection of the interdendritic liquid, which is driven by density variations within the mushy zone. Process variables that have been investigated include the effects of thermal gradients and solidification rate, and the effect of the concentration of hydrogen on the formation and the amount of interdendritic porosity. These calculations show that for an initial hydrogen content less than approximately 0.03 ppm, no interdendritic porosity results. For initial hydrogen contents in the range of 0.03 to 1 ppm, there is interdendritic porosity. The amount is sensitive to the thermal gradient and solidification rate; an increase in either or both of these variables decreases the amount of interdendritic porosity. More... »

PAGES

1979-1987

References to SciGraph publications

  • 1984-01. Convection in the two-phase zone of solidifying alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1987-04-01. Densities of aluminum-rich in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1985-06. Mathematical modeling of porosity formation in solidification in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1975-01. The dendrite arm spacings of aluminum-copper alloys solidified under steady-state conditions in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1987-03. Permeability for flow of interdendritic liquid in columnar-dendritic alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1987-06-01. Surface tension of aluminumrich Al-Cu liquid alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02647028

    DOI

    http://dx.doi.org/10.1007/bf02647028

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051145150


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poirier", 
            "givenName": "D. R.", 
            "id": "sg:person.015717554343.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717554343.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yeum", 
            "givenName": "K.", 
            "id": "sg:person.011473365702.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011473365702.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "35803, Huntsville, AL", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "35803, Huntsville, AL"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maples", 
            "givenName": "A. L.", 
            "id": "sg:person.011434713473.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011434713473.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02658450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016189863", 
              "https://doi.org/10.1007/bf02658450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02661075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006444221", 
              "https://doi.org/10.1007/bf02661075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02649490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047904376", 
              "https://doi.org/10.1007/bf02649490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02679728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008901287", 
              "https://doi.org/10.1007/bf02679728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02668569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040562367", 
              "https://doi.org/10.1007/bf02668569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02673688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028897146", 
              "https://doi.org/10.1007/bf02673688"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987-11", 
        "datePublishedReg": "1987-11-01", 
        "description": "A computer model is used to predict the formation and the amount of microporosity in directionally solidified Al-4.5 wt pct Cu alloy. The model considers the interplay between so-called \u201csolidification shrinkage\u201d and \u201cgas porosity\u201d that are often thought to be two contributing and different causes of interdendritic porosity. There is an accounting of the alloy element, Cu, and of dissolved hydrogen in the solid- and liquid-phase during solidification. Consistent with thermodynamics, therefore, a prediction of forming the gas-phase in the interdendritic liquid is made. The local pressure within the interdendritic liquid is calculated by macrosegregation theory that considers the convection of the interdendritic liquid, which is driven by density variations within the mushy zone. Process variables that have been investigated include the effects of thermal gradients and solidification rate, and the effect of the concentration of hydrogen on the formation and the amount of interdendritic porosity. These calculations show that for an initial hydrogen content less than approximately 0.03 ppm, no interdendritic porosity results. For initial hydrogen contents in the range of 0.03 to 1 ppm, there is interdendritic porosity. The amount is sensitive to the thermal gradient and solidification rate; an increase in either or both of these variables decreases the amount of interdendritic porosity.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02647028", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "interdendritic porosity", 
          "initial hydrogen content", 
          "interdendritic liquid", 
          "solidification rate", 
          "aluminium-rich Al-Cu", 
          "thermal gradient", 
          "hydrogen content", 
          "Al-Cu", 
          "amount of microporosity", 
          "concentration of hydrogen", 
          "solidification shrinkage", 
          "gas porosity", 
          "alloy elements", 
          "mushy zone", 
          "microporosity formation", 
          "porosity results", 
          "porosity", 
          "process variables", 
          "local pressure", 
          "thermodynamic predictions", 
          "density variations", 
          "liquid", 
          "computer model", 
          "Al-4.5", 
          "hydrogen", 
          "solidification", 
          "convection", 
          "gradient", 
          "microporosity", 
          "shrinkage", 
          "Cu", 
          "prediction", 
          "amount", 
          "ppm", 
          "formation", 
          "model", 
          "content", 
          "zone", 
          "thermodynamics", 
          "pressure", 
          "effect", 
          "rate", 
          "range", 
          "calculations", 
          "elements", 
          "results", 
          "variation", 
          "concentration", 
          "increase", 
          "variables", 
          "theory", 
          "interplay", 
          "accounting", 
          "different causes", 
          "cause", 
          "macrosegregation theory", 
          "interdendritic porosity results"
        ], 
        "name": "A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys", 
        "pagination": "1979-1987", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051145150"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02647028"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02647028", 
          "https://app.dimensions.ai/details/publication/pub.1051145150"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_199.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02647028"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02647028'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02647028'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02647028'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02647028'


     

    This table displays all metadata directly associated to this object as RDF triples.

    156 TRIPLES      22 PREDICATES      89 URIs      75 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02647028 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N8ed518a131154c2b9a6f71737ca8af30
    4 schema:citation sg:pub.10.1007/bf02649490
    5 sg:pub.10.1007/bf02658450
    6 sg:pub.10.1007/bf02661075
    7 sg:pub.10.1007/bf02668569
    8 sg:pub.10.1007/bf02673688
    9 sg:pub.10.1007/bf02679728
    10 schema:datePublished 1987-11
    11 schema:datePublishedReg 1987-11-01
    12 schema:description A computer model is used to predict the formation and the amount of microporosity in directionally solidified Al-4.5 wt pct Cu alloy. The model considers the interplay between so-called “solidification shrinkage” and “gas porosity” that are often thought to be two contributing and different causes of interdendritic porosity. There is an accounting of the alloy element, Cu, and of dissolved hydrogen in the solid- and liquid-phase during solidification. Consistent with thermodynamics, therefore, a prediction of forming the gas-phase in the interdendritic liquid is made. The local pressure within the interdendritic liquid is calculated by macrosegregation theory that considers the convection of the interdendritic liquid, which is driven by density variations within the mushy zone. Process variables that have been investigated include the effects of thermal gradients and solidification rate, and the effect of the concentration of hydrogen on the formation and the amount of interdendritic porosity. These calculations show that for an initial hydrogen content less than approximately 0.03 ppm, no interdendritic porosity results. For initial hydrogen contents in the range of 0.03 to 1 ppm, there is interdendritic porosity. The amount is sensitive to the thermal gradient and solidification rate; an increase in either or both of these variables decreases the amount of interdendritic porosity.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N130b896c54e343038b6d01be44d88666
    17 N38e71887f9154ada8f5559a8c5576753
    18 sg:journal.1136292
    19 schema:keywords Al-4.5
    20 Al-Cu
    21 Cu
    22 accounting
    23 alloy elements
    24 aluminium-rich Al-Cu
    25 amount
    26 amount of microporosity
    27 calculations
    28 cause
    29 computer model
    30 concentration
    31 concentration of hydrogen
    32 content
    33 convection
    34 density variations
    35 different causes
    36 effect
    37 elements
    38 formation
    39 gas porosity
    40 gradient
    41 hydrogen
    42 hydrogen content
    43 increase
    44 initial hydrogen content
    45 interdendritic liquid
    46 interdendritic porosity
    47 interdendritic porosity results
    48 interplay
    49 liquid
    50 local pressure
    51 macrosegregation theory
    52 microporosity
    53 microporosity formation
    54 model
    55 mushy zone
    56 porosity
    57 porosity results
    58 ppm
    59 prediction
    60 pressure
    61 process variables
    62 range
    63 rate
    64 results
    65 shrinkage
    66 solidification
    67 solidification rate
    68 solidification shrinkage
    69 theory
    70 thermal gradient
    71 thermodynamic predictions
    72 thermodynamics
    73 variables
    74 variation
    75 zone
    76 schema:name A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys
    77 schema:pagination 1979-1987
    78 schema:productId N5296a8f9132e43119517222a29b1868d
    79 N8ddced240579443b8fbdc55005d24cbd
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051145150
    81 https://doi.org/10.1007/bf02647028
    82 schema:sdDatePublished 2021-12-01T19:06
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher Nea979212bc8f40aa8dc5142d9a7a8144
    85 schema:url https://doi.org/10.1007/bf02647028
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N130b896c54e343038b6d01be44d88666 schema:volumeNumber 18
    90 rdf:type schema:PublicationVolume
    91 N1b0669aa255a44d29c129cc06f98ce5d rdf:first sg:person.011434713473.87
    92 rdf:rest rdf:nil
    93 N38e71887f9154ada8f5559a8c5576753 schema:issueNumber 11
    94 rdf:type schema:PublicationIssue
    95 N5296a8f9132e43119517222a29b1868d schema:name dimensions_id
    96 schema:value pub.1051145150
    97 rdf:type schema:PropertyValue
    98 N8ddced240579443b8fbdc55005d24cbd schema:name doi
    99 schema:value 10.1007/bf02647028
    100 rdf:type schema:PropertyValue
    101 N8ed518a131154c2b9a6f71737ca8af30 rdf:first sg:person.015717554343.15
    102 rdf:rest Nd24e12917cd94770b237372c7e4afd1e
    103 Nd24e12917cd94770b237372c7e4afd1e rdf:first sg:person.011473365702.06
    104 rdf:rest N1b0669aa255a44d29c129cc06f98ce5d
    105 Nea979212bc8f40aa8dc5142d9a7a8144 schema:name Springer Nature - SN SciGraph project
    106 rdf:type schema:Organization
    107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Engineering
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Materials Engineering
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1136292 schema:issn 1073-5623
    114 1543-1940
    115 schema:name Metallurgical and Materials Transactions A
    116 schema:publisher Springer Nature
    117 rdf:type schema:Periodical
    118 sg:person.011434713473.87 schema:affiliation grid-institutes:None
    119 schema:familyName Maples
    120 schema:givenName A. L.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011434713473.87
    122 rdf:type schema:Person
    123 sg:person.011473365702.06 schema:affiliation grid-institutes:grid.134563.6
    124 schema:familyName Yeum
    125 schema:givenName K.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011473365702.06
    127 rdf:type schema:Person
    128 sg:person.015717554343.15 schema:affiliation grid-institutes:grid.134563.6
    129 schema:familyName Poirier
    130 schema:givenName D. R.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717554343.15
    132 rdf:type schema:Person
    133 sg:pub.10.1007/bf02649490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047904376
    134 https://doi.org/10.1007/bf02649490
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf02658450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016189863
    137 https://doi.org/10.1007/bf02658450
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf02661075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006444221
    140 https://doi.org/10.1007/bf02661075
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf02668569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040562367
    143 https://doi.org/10.1007/bf02668569
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf02673688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028897146
    146 https://doi.org/10.1007/bf02673688
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf02679728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008901287
    149 https://doi.org/10.1007/bf02679728
    150 rdf:type schema:CreativeWork
    151 grid-institutes:None schema:alternateName 35803, Huntsville, AL
    152 schema:name 35803, Huntsville, AL
    153 rdf:type schema:Organization
    154 grid-institutes:grid.134563.6 schema:alternateName Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ
    155 schema:name Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ
    156 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...