A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-11

AUTHORS

D. R. Poirier, K. Yeum, A. L. Maples

ABSTRACT

A computer model is used to predict the formation and the amount of microporosity in directionally solidified Al-4.5 wt pct Cu alloy. The model considers the interplay between so-called “solidification shrinkage” and “gas porosity” that are often thought to be two contributing and different causes of interdendritic porosity. There is an accounting of the alloy element, Cu, and of dissolved hydrogen in the solid- and liquid-phase during solidification. Consistent with thermodynamics, therefore, a prediction of forming the gas-phase in the interdendritic liquid is made. The local pressure within the interdendritic liquid is calculated by macrosegregation theory that considers the convection of the interdendritic liquid, which is driven by density variations within the mushy zone. Process variables that have been investigated include the effects of thermal gradients and solidification rate, and the effect of the concentration of hydrogen on the formation and the amount of interdendritic porosity. These calculations show that for an initial hydrogen content less than approximately 0.03 ppm, no interdendritic porosity results. For initial hydrogen contents in the range of 0.03 to 1 ppm, there is interdendritic porosity. The amount is sensitive to the thermal gradient and solidification rate; an increase in either or both of these variables decreases the amount of interdendritic porosity. More... »

PAGES

1979-1987

References to SciGraph publications

  • 1984-01. Convection in the two-phase zone of solidifying alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1987-04-01. Densities of aluminum-rich Aluminum-Copper Alloys during Solidification in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1985-06. Mathematical modeling of porosity formation in solidification in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1975-01. The dendrite arm spacings of aluminum-copper alloys solidified under steady-state conditions in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1987-03. Permeability for flow of interdendritic liquid in columnar-dendritic alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1987-06-01. Surface tension of aluminumrich Al-Cu liquid alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02647028

    DOI

    http://dx.doi.org/10.1007/bf02647028

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051145150


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poirier", 
            "givenName": "D. R.", 
            "id": "sg:person.015717554343.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717554343.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yeum", 
            "givenName": "K.", 
            "id": "sg:person.011473365702.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011473365702.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "35803, Huntsville, AL", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "35803, Huntsville, AL"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maples", 
            "givenName": "A. L.", 
            "id": "sg:person.011434713473.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011434713473.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02649490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047904376", 
              "https://doi.org/10.1007/bf02649490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02668569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040562367", 
              "https://doi.org/10.1007/bf02668569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02673688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028897146", 
              "https://doi.org/10.1007/bf02673688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02661075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006444221", 
              "https://doi.org/10.1007/bf02661075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02679728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008901287", 
              "https://doi.org/10.1007/bf02679728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02658450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016189863", 
              "https://doi.org/10.1007/bf02658450"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987-11", 
        "datePublishedReg": "1987-11-01", 
        "description": "A computer model is used to predict the formation and the amount of microporosity in directionally solidified Al-4.5 wt pct Cu alloy. The model considers the interplay between so-called \u201csolidification shrinkage\u201d and \u201cgas porosity\u201d that are often thought to be two contributing and different causes of interdendritic porosity. There is an accounting of the alloy element, Cu, and of dissolved hydrogen in the solid- and liquid-phase during solidification. Consistent with thermodynamics, therefore, a prediction of forming the gas-phase in the interdendritic liquid is made. The local pressure within the interdendritic liquid is calculated by macrosegregation theory that considers the convection of the interdendritic liquid, which is driven by density variations within the mushy zone. Process variables that have been investigated include the effects of thermal gradients and solidification rate, and the effect of the concentration of hydrogen on the formation and the amount of interdendritic porosity. These calculations show that for an initial hydrogen content less than approximately 0.03 ppm, no interdendritic porosity results. For initial hydrogen contents in the range of 0.03 to 1 ppm, there is interdendritic porosity. The amount is sensitive to the thermal gradient and solidification rate; an increase in either or both of these variables decreases the amount of interdendritic porosity.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02647028", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "interdendritic porosity", 
          "initial hydrogen content", 
          "interdendritic liquid", 
          "solidification rate", 
          "hydrogen content", 
          "thermal gradient", 
          "Al-4.5 wt", 
          "amount of microporosity", 
          "concentration of hydrogen", 
          "solidification shrinkage", 
          "gas porosity", 
          "alloy elements", 
          "mushy zone", 
          "microporosity formation", 
          "Al-Cu", 
          "porosity results", 
          "process variables", 
          "porosity", 
          "thermodynamic predictions", 
          "local pressure", 
          "density variations", 
          "liquid", 
          "computer model", 
          "hydrogen", 
          "solidification", 
          "convection", 
          "microporosity", 
          "Cu", 
          "gradient", 
          "prediction", 
          "shrinkage", 
          "ppm", 
          "wt", 
          "amount", 
          "formation", 
          "model", 
          "content", 
          "pressure", 
          "zone", 
          "thermodynamics", 
          "range", 
          "calculations", 
          "effect", 
          "rate", 
          "elements", 
          "variation", 
          "results", 
          "increase", 
          "concentration", 
          "variables", 
          "theory", 
          "interplay", 
          "accounting", 
          "different causes", 
          "cause"
        ], 
        "name": "A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys", 
        "pagination": "1979-1987", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051145150"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02647028"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02647028", 
          "https://app.dimensions.ai/details/publication/pub.1051145150"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_189.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02647028"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02647028'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02647028'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02647028'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02647028'


     

    This table displays all metadata directly associated to this object as RDF triples.

    153 TRIPLES      21 PREDICATES      86 URIs      72 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02647028 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N52e3857b5a4f4aea93e5ee60cee6fad7
    4 schema:citation sg:pub.10.1007/bf02649490
    5 sg:pub.10.1007/bf02658450
    6 sg:pub.10.1007/bf02661075
    7 sg:pub.10.1007/bf02668569
    8 sg:pub.10.1007/bf02673688
    9 sg:pub.10.1007/bf02679728
    10 schema:datePublished 1987-11
    11 schema:datePublishedReg 1987-11-01
    12 schema:description A computer model is used to predict the formation and the amount of microporosity in directionally solidified Al-4.5 wt pct Cu alloy. The model considers the interplay between so-called “solidification shrinkage” and “gas porosity” that are often thought to be two contributing and different causes of interdendritic porosity. There is an accounting of the alloy element, Cu, and of dissolved hydrogen in the solid- and liquid-phase during solidification. Consistent with thermodynamics, therefore, a prediction of forming the gas-phase in the interdendritic liquid is made. The local pressure within the interdendritic liquid is calculated by macrosegregation theory that considers the convection of the interdendritic liquid, which is driven by density variations within the mushy zone. Process variables that have been investigated include the effects of thermal gradients and solidification rate, and the effect of the concentration of hydrogen on the formation and the amount of interdendritic porosity. These calculations show that for an initial hydrogen content less than approximately 0.03 ppm, no interdendritic porosity results. For initial hydrogen contents in the range of 0.03 to 1 ppm, there is interdendritic porosity. The amount is sensitive to the thermal gradient and solidification rate; an increase in either or both of these variables decreases the amount of interdendritic porosity.
    13 schema:genre article
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N1f557ac7e39c45d9b5b8a3b23f995796
    16 N37271a8a9848435ea9be121c00ca46cb
    17 sg:journal.1136292
    18 schema:keywords Al-4.5 wt
    19 Al-Cu
    20 Cu
    21 accounting
    22 alloy elements
    23 amount
    24 amount of microporosity
    25 calculations
    26 cause
    27 computer model
    28 concentration
    29 concentration of hydrogen
    30 content
    31 convection
    32 density variations
    33 different causes
    34 effect
    35 elements
    36 formation
    37 gas porosity
    38 gradient
    39 hydrogen
    40 hydrogen content
    41 increase
    42 initial hydrogen content
    43 interdendritic liquid
    44 interdendritic porosity
    45 interplay
    46 liquid
    47 local pressure
    48 microporosity
    49 microporosity formation
    50 model
    51 mushy zone
    52 porosity
    53 porosity results
    54 ppm
    55 prediction
    56 pressure
    57 process variables
    58 range
    59 rate
    60 results
    61 shrinkage
    62 solidification
    63 solidification rate
    64 solidification shrinkage
    65 theory
    66 thermal gradient
    67 thermodynamic predictions
    68 thermodynamics
    69 variables
    70 variation
    71 wt
    72 zone
    73 schema:name A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys
    74 schema:pagination 1979-1987
    75 schema:productId N140f2ab2b52d4db8906282c473d0978d
    76 Nac30a8b48beb4d5db8846c31baef25b4
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051145150
    78 https://doi.org/10.1007/bf02647028
    79 schema:sdDatePublished 2022-11-24T20:46
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N8bf3deea486347ffaafd6190ebf19350
    82 schema:url https://doi.org/10.1007/bf02647028
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N140f2ab2b52d4db8906282c473d0978d schema:name dimensions_id
    87 schema:value pub.1051145150
    88 rdf:type schema:PropertyValue
    89 N148fdcac7231489bb32a2c6f5ebdc04e rdf:first sg:person.011434713473.87
    90 rdf:rest rdf:nil
    91 N1f557ac7e39c45d9b5b8a3b23f995796 schema:issueNumber 11
    92 rdf:type schema:PublicationIssue
    93 N37271a8a9848435ea9be121c00ca46cb schema:volumeNumber 18
    94 rdf:type schema:PublicationVolume
    95 N52e3857b5a4f4aea93e5ee60cee6fad7 rdf:first sg:person.015717554343.15
    96 rdf:rest Nd2e6f8031782461c8a29f405cc7d02a4
    97 N8bf3deea486347ffaafd6190ebf19350 schema:name Springer Nature - SN SciGraph project
    98 rdf:type schema:Organization
    99 Nac30a8b48beb4d5db8846c31baef25b4 schema:name doi
    100 schema:value 10.1007/bf02647028
    101 rdf:type schema:PropertyValue
    102 Nd2e6f8031782461c8a29f405cc7d02a4 rdf:first sg:person.011473365702.06
    103 rdf:rest N148fdcac7231489bb32a2c6f5ebdc04e
    104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Engineering
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Materials Engineering
    109 rdf:type schema:DefinedTerm
    110 sg:journal.1136292 schema:issn 1073-5623
    111 1543-1940
    112 schema:name Metallurgical and Materials Transactions A
    113 schema:publisher Springer Nature
    114 rdf:type schema:Periodical
    115 sg:person.011434713473.87 schema:affiliation grid-institutes:None
    116 schema:familyName Maples
    117 schema:givenName A. L.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011434713473.87
    119 rdf:type schema:Person
    120 sg:person.011473365702.06 schema:affiliation grid-institutes:grid.134563.6
    121 schema:familyName Yeum
    122 schema:givenName K.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011473365702.06
    124 rdf:type schema:Person
    125 sg:person.015717554343.15 schema:affiliation grid-institutes:grid.134563.6
    126 schema:familyName Poirier
    127 schema:givenName D. R.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717554343.15
    129 rdf:type schema:Person
    130 sg:pub.10.1007/bf02649490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047904376
    131 https://doi.org/10.1007/bf02649490
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/bf02658450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016189863
    134 https://doi.org/10.1007/bf02658450
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf02661075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006444221
    137 https://doi.org/10.1007/bf02661075
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf02668569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040562367
    140 https://doi.org/10.1007/bf02668569
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf02673688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028897146
    143 https://doi.org/10.1007/bf02673688
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf02679728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008901287
    146 https://doi.org/10.1007/bf02679728
    147 rdf:type schema:CreativeWork
    148 grid-institutes:None schema:alternateName 35803, Huntsville, AL
    149 schema:name 35803, Huntsville, AL
    150 rdf:type schema:Organization
    151 grid-institutes:grid.134563.6 schema:alternateName Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ
    152 schema:name Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ
    153 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...