Ordering tendencies in Pd-Pt, Rh-Pt, and Ag-Au alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-02

AUTHORS

Z. W. Lu, B. M. Klein, A. Zunger

ABSTRACT

First-principles quantum-mechanical calculations indicate that the mixing enthalpies for Pd-Pt and Rh-Pt solid solutions are negative, in agreement with experiment. Calculations of the diffuse-scattering intensity due to short-range order also exhibits ordering tendencies. Further, the directly calculated enthalpies of formation of ordered intermetallic compounds are negative. These ordering tendencies are in direct conflict with a 1959 prediction of Raub that Pd-Pt and Rh-Pt will phase-separate below ~760 °C (hence their mixing energy will be positive), a position that has been adopted by all binary alloy phase diagram compilations. The present authors predict that Pd1-xPtx will order in the L12, L10, and L12 structures ([001] superstructures) at compositionsx = 1/4, 1/2, and 3/4, respectively, while the ordered structures of Rh1-xPtx are predicted to be superlattices stacked along the [012] directions. While the calculated ordering temperatures for these intermetallic compounds are too low to enable direct growth into the ordered phase, diffuse-scattering experiments at higher temperatures should reveal ordering rather than phase-separation characteristics (i.e., off-F peaks). The situation is very similar to the case of Ag-Au, where an ordering tendency is manifested both by a diffuse scattering intensity and by a negative enthalpy of mixing. An experimental reexamination of PdPt and Rh-Pt is needed. More... »

PAGES

36-45

References to SciGraph publications

  • 1994. Planewaves, Pseudopotentials and the LAPW Method in NONE
  • 1988. Monte Carlo Simulation in Statistical Physics, An Introduction in NONE
  • 1992-04-01. Pt-Rh (platinum-rhodium) in JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION
  • 1991-10-01. Pd-Pt (Palladium-Platinum) in JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION
  • 1972-03. A thermodynamic study of solid Pd-Pt alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1994. Electronic Structure of <100> Ag/Au Multilayers in METALLIC ALLOYS: EXPERIMENTAL AND THEORETICAL PERSPECTIVES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02646247

    DOI

    http://dx.doi.org/10.1007/bf02646247

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028424607


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of California, 95616, Davis, CA", 
              "id": "http://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "Department of Physics, University of California, 95616, Davis, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Z. W.", 
            "id": "sg:person.016522555127.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522555127.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of California, 95616, Davis, CA", 
              "id": "http://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "Department of Physics, University of California, 95616, Davis, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klein", 
            "givenName": "B. M.", 
            "id": "sg:person.014163346260.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014163346260.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Renewable Energy Laboratory, 80401, Golden, CO", 
              "id": "http://www.grid.ac/institutes/grid.419357.d", 
              "name": [
                "National Renewable Energy Laboratory, 80401, Golden, CO"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zunger", 
            "givenName": "A.", 
            "id": "sg:person.01304367114.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304367114.15"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-011-1092-1_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051542820", 
              "https://doi.org/10.1007/978-94-011-1092-1_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02642747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043171002", 
              "https://doi.org/10.1007/bf02642747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02667501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026957082", 
              "https://doi.org/10.1007/bf02667501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-08854-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034830849", 
              "https://doi.org/10.1007/978-3-662-08854-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2312-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002855669", 
              "https://doi.org/10.1007/978-1-4757-2312-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011755385", 
              "https://doi.org/10.1007/bf02645087"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-02", 
        "datePublishedReg": "1995-02-01", 
        "description": "First-principles quantum-mechanical calculations indicate that the mixing enthalpies for Pd-Pt and Rh-Pt solid solutions are negative, in agreement with experiment. Calculations of the diffuse-scattering intensity due to short-range order also exhibits ordering tendencies. Further, the directly calculated enthalpies of formation of ordered intermetallic compounds are negative. These ordering tendencies are in direct conflict with a 1959 prediction of Raub that Pd-Pt and Rh-Pt will phase-separate below ~760 \u00b0C (hence their mixing energy will be positive), a position that has been adopted by all binary alloy phase diagram compilations. The present authors predict that Pd1-xPtx will order in the L12, L10, and L12 structures ([001] superstructures) at compositionsx = 1/4, 1/2, and 3/4, respectively, while the ordered structures of Rh1-xPtx are predicted to be superlattices stacked along the [012] directions. While the calculated ordering temperatures for these intermetallic compounds are too low to enable direct growth into the ordered phase, diffuse-scattering experiments at higher temperatures should reveal ordering rather than phase-separation characteristics (i.e., off-F peaks). The situation is very similar to the case of Ag-Au, where an ordering tendency is manifested both by a diffuse scattering intensity and by a negative enthalpy of mixing. An experimental reexamination of PdPt and Rh-Pt is needed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02646247", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1319799", 
            "issn": [
              "1547-7037", 
              "1544-1032"
            ], 
            "name": "Journal of Phase Equilibria and Diffusion", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "intermetallic compounds", 
          "phase-separation characteristics", 
          "Ag-Au", 
          "direct growth", 
          "solid solution", 
          "Pd-Pt", 
          "L12 structure", 
          "high temperature", 
          "first-principles quantum-mechanical calculations", 
          "diffuse-scattering intensity", 
          "Rh-Pt", 
          "temperature", 
          "negative enthalpy", 
          "ordering tendencies", 
          "short-range order", 
          "enthalpy", 
          "present authors", 
          "structure", 
          "experiments", 
          "calculations", 
          "superlattices", 
          "solution", 
          "phase", 
          "prediction", 
          "PdPt", 
          "L12", 
          "enthalpies of formation", 
          "direction", 
          "characteristics", 
          "experimental reexamination", 
          "agreement", 
          "ordering temperature", 
          "order", 
          "L10", 
          "intensity", 
          "formation", 
          "tendency", 
          "position", 
          "quantum-mechanical calculations", 
          "compounds", 
          "growth", 
          "situation", 
          "cases", 
          "authors", 
          "diffuse", 
          "compilation", 
          "direct conflict", 
          "Raub", 
          "reexamination", 
          "conflict", 
          "Rh-Pt solid solutions", 
          "prediction of Raub", 
          "binary alloy phase diagram compilations", 
          "alloy phase diagram compilations", 
          "phase diagram compilations", 
          "diagram compilations", 
          "Pd1-xPtx", 
          "compositionsx", 
          "structures of Rh1-xPtx", 
          "Rh1-xPtx", 
          "diffuse-scattering experiments"
        ], 
        "name": "Ordering tendencies in Pd-Pt, Rh-Pt, and Ag-Au alloys", 
        "pagination": "36-45", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028424607"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02646247"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02646247", 
          "https://app.dimensions.ai/details/publication/pub.1028424607"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_292.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02646247"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02646247'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02646247'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02646247'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02646247'


     

    This table displays all metadata directly associated to this object as RDF triples.

    160 TRIPLES      22 PREDICATES      93 URIs      79 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02646247 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N12ce435187474326a211f57bf919d00a
    4 schema:citation sg:pub.10.1007/978-1-4757-2312-0
    5 sg:pub.10.1007/978-3-662-08854-8
    6 sg:pub.10.1007/978-94-011-1092-1_32
    7 sg:pub.10.1007/bf02642747
    8 sg:pub.10.1007/bf02645087
    9 sg:pub.10.1007/bf02667501
    10 schema:datePublished 1995-02
    11 schema:datePublishedReg 1995-02-01
    12 schema:description First-principles quantum-mechanical calculations indicate that the mixing enthalpies for Pd-Pt and Rh-Pt solid solutions are negative, in agreement with experiment. Calculations of the diffuse-scattering intensity due to short-range order also exhibits ordering tendencies. Further, the directly calculated enthalpies of formation of ordered intermetallic compounds are negative. These ordering tendencies are in direct conflict with a 1959 prediction of Raub that Pd-Pt and Rh-Pt will phase-separate below ~760 °C (hence their mixing energy will be positive), a position that has been adopted by all binary alloy phase diagram compilations. The present authors predict that Pd1-xPtx will order in the L12, L10, and L12 structures ([001] superstructures) at compositionsx = 1/4, 1/2, and 3/4, respectively, while the ordered structures of Rh1-xPtx are predicted to be superlattices stacked along the [012] directions. While the calculated ordering temperatures for these intermetallic compounds are too low to enable direct growth into the ordered phase, diffuse-scattering experiments at higher temperatures should reveal ordering rather than phase-separation characteristics (i.e., off-F peaks). The situation is very similar to the case of Ag-Au, where an ordering tendency is manifested both by a diffuse scattering intensity and by a negative enthalpy of mixing. An experimental reexamination of PdPt and Rh-Pt is needed.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N0ccb1158e84e4d46af925b6034f391f9
    17 N32b523bf59814b8889557632bb0f75c2
    18 sg:journal.1319799
    19 schema:keywords Ag-Au
    20 L10
    21 L12
    22 L12 structure
    23 Pd-Pt
    24 Pd1-xPtx
    25 PdPt
    26 Raub
    27 Rh-Pt
    28 Rh-Pt solid solutions
    29 Rh1-xPtx
    30 agreement
    31 alloy phase diagram compilations
    32 authors
    33 binary alloy phase diagram compilations
    34 calculations
    35 cases
    36 characteristics
    37 compilation
    38 compositionsx
    39 compounds
    40 conflict
    41 diagram compilations
    42 diffuse
    43 diffuse-scattering experiments
    44 diffuse-scattering intensity
    45 direct conflict
    46 direct growth
    47 direction
    48 enthalpies of formation
    49 enthalpy
    50 experimental reexamination
    51 experiments
    52 first-principles quantum-mechanical calculations
    53 formation
    54 growth
    55 high temperature
    56 intensity
    57 intermetallic compounds
    58 negative enthalpy
    59 order
    60 ordering temperature
    61 ordering tendencies
    62 phase
    63 phase diagram compilations
    64 phase-separation characteristics
    65 position
    66 prediction
    67 prediction of Raub
    68 present authors
    69 quantum-mechanical calculations
    70 reexamination
    71 short-range order
    72 situation
    73 solid solution
    74 solution
    75 structure
    76 structures of Rh1-xPtx
    77 superlattices
    78 temperature
    79 tendency
    80 schema:name Ordering tendencies in Pd-Pt, Rh-Pt, and Ag-Au alloys
    81 schema:pagination 36-45
    82 schema:productId N65940a9ff098496eb03793bae93bd7ab
    83 Nc7c913302fc84f18a937c5caaad0fe51
    84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028424607
    85 https://doi.org/10.1007/bf02646247
    86 schema:sdDatePublished 2021-12-01T19:10
    87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    88 schema:sdPublisher N2345634e1f374f0fba48ec2e770e763b
    89 schema:url https://doi.org/10.1007/bf02646247
    90 sgo:license sg:explorer/license/
    91 sgo:sdDataset articles
    92 rdf:type schema:ScholarlyArticle
    93 N0ccb1158e84e4d46af925b6034f391f9 schema:issueNumber 1
    94 rdf:type schema:PublicationIssue
    95 N12ce435187474326a211f57bf919d00a rdf:first sg:person.016522555127.90
    96 rdf:rest N8c8ba2fc9ed54ce5832ed9b425cd52ea
    97 N2345634e1f374f0fba48ec2e770e763b schema:name Springer Nature - SN SciGraph project
    98 rdf:type schema:Organization
    99 N32b523bf59814b8889557632bb0f75c2 schema:volumeNumber 16
    100 rdf:type schema:PublicationVolume
    101 N5516a336b67f413b81727035d2175197 rdf:first sg:person.01304367114.15
    102 rdf:rest rdf:nil
    103 N65940a9ff098496eb03793bae93bd7ab schema:name doi
    104 schema:value 10.1007/bf02646247
    105 rdf:type schema:PropertyValue
    106 N8c8ba2fc9ed54ce5832ed9b425cd52ea rdf:first sg:person.014163346260.42
    107 rdf:rest N5516a336b67f413b81727035d2175197
    108 Nc7c913302fc84f18a937c5caaad0fe51 schema:name dimensions_id
    109 schema:value pub.1028424607
    110 rdf:type schema:PropertyValue
    111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Engineering
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Materials Engineering
    116 rdf:type schema:DefinedTerm
    117 sg:journal.1319799 schema:issn 1544-1032
    118 1547-7037
    119 schema:name Journal of Phase Equilibria and Diffusion
    120 schema:publisher Springer Nature
    121 rdf:type schema:Periodical
    122 sg:person.01304367114.15 schema:affiliation grid-institutes:grid.419357.d
    123 schema:familyName Zunger
    124 schema:givenName A.
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304367114.15
    126 rdf:type schema:Person
    127 sg:person.014163346260.42 schema:affiliation grid-institutes:grid.27860.3b
    128 schema:familyName Klein
    129 schema:givenName B. M.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014163346260.42
    131 rdf:type schema:Person
    132 sg:person.016522555127.90 schema:affiliation grid-institutes:grid.27860.3b
    133 schema:familyName Lu
    134 schema:givenName Z. W.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522555127.90
    136 rdf:type schema:Person
    137 sg:pub.10.1007/978-1-4757-2312-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002855669
    138 https://doi.org/10.1007/978-1-4757-2312-0
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/978-3-662-08854-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034830849
    141 https://doi.org/10.1007/978-3-662-08854-8
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/978-94-011-1092-1_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051542820
    144 https://doi.org/10.1007/978-94-011-1092-1_32
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/bf02642747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043171002
    147 https://doi.org/10.1007/bf02642747
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/bf02645087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011755385
    150 https://doi.org/10.1007/bf02645087
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/bf02667501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026957082
    153 https://doi.org/10.1007/bf02667501
    154 rdf:type schema:CreativeWork
    155 grid-institutes:grid.27860.3b schema:alternateName Department of Physics, University of California, 95616, Davis, CA
    156 schema:name Department of Physics, University of California, 95616, Davis, CA
    157 rdf:type schema:Organization
    158 grid-institutes:grid.419357.d schema:alternateName National Renewable Energy Laboratory, 80401, Golden, CO
    159 schema:name National Renewable Energy Laboratory, 80401, Golden, CO
    160 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...