Ontology type: schema:ScholarlyArticle
1988-08
AUTHORSM. E. Glicksman, E. Winsa, R. C. Hahn, T. A. Lograsso, S. H. Tirmizi, M. E. Selleck
ABSTRACTDendritic growth is one of the most common forms of crystallization in supercooled metals or al-loys. The isothermal dendritic growth experiment (IDGE) is a microgravity flight-oriented scientific experiment aimed at testing and developing dendritic growth theory at small supercoolings. In the case of dendrites grown from pure, supercooled melts, growth is controlled by diffusion-limited transport of heat, which causes temperature gradients to be present in the liquid phase. Thermal gradients can excite anisotropic convection which affects the growth velocity, overall crystal mor-phology, and distribution of heat and solute. Dendritic growth, by its nature, does not permit inde-pendent manipulation of parameters which would reduce the vigor of melt convection under terrestrial conditions. The reduction of gravity through free fall is the only practical way to allow observation of “convection free” growth and thereby provide a test of dendritic growth theory. The IDGE is currently being developed at our laboratory, in collaboration with the NASA Lewis Research Center. The apparatus consists of a controlled thermostatic bath capable of millikelvin stability, a photographic data collection system, a crystal growth chamber ensuring “free” dendritic growth, and an optical RAM crystal growth detection system to initiate data collection. The ex-periment will be essentially autonomous, since it will be located aboard the Materials Science Laboratory in the cargo bay of the space shuttle, where direct astronaut intervention is not possible. Limited interaction from the ground is planned through a number of preprogrammed computer com-mands. Previously conducted ground based studies will be described and the current approach to performing these studies in low earth orbit will be discussed. More... »
PAGES1945-1953
http://scigraph.springernature.com/pub.10.1007/bf02645198
DOIhttp://dx.doi.org/10.1007/bf02645198
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1031518593
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mechanical Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Rensselaer Polytechnic Institute, 12180-3590, Troy, NY",
"id": "http://www.grid.ac/institutes/grid.33647.35",
"name": [
"Rensselaer Polytechnic Institute, 12180-3590, Troy, NY"
],
"type": "Organization"
},
"familyName": "Glicksman",
"givenName": "M. E.",
"id": "sg:person.010720014261.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "NASA Lewis Re- search Center, 44135, Cleveland, OH",
"id": "http://www.grid.ac/institutes/None",
"name": [
"NASA Lewis Re- search Center, 44135, Cleveland, OH"
],
"type": "Organization"
},
"familyName": "Winsa",
"givenName": "E.",
"id": "sg:person.011404402162.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404402162.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Rensselaer Polytechnic Institute, 12180-3590, Troy, NY",
"id": "http://www.grid.ac/institutes/grid.33647.35",
"name": [
"Rensselaer Polytechnic Institute, 12180-3590, Troy, NY"
],
"type": "Organization"
},
"familyName": "Hahn",
"givenName": "R. C.",
"id": "sg:person.011513330527.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011513330527.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Rensselaer Polytechnic Institute, 12180-3590, Troy, NY",
"id": "http://www.grid.ac/institutes/grid.33647.35",
"name": [
"Rensselaer Polytechnic Institute, 12180-3590, Troy, NY"
],
"type": "Organization"
},
"familyName": "Lograsso",
"givenName": "T. A.",
"id": "sg:person.016346154162.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016346154162.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Rensselaer Polytechnic Institute, 12180-3590, Troy, NY",
"id": "http://www.grid.ac/institutes/grid.33647.35",
"name": [
"Rensselaer Polytechnic Institute, 12180-3590, Troy, NY"
],
"type": "Organization"
},
"familyName": "Tirmizi",
"givenName": "S. H.",
"id": "sg:person.010743726473.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010743726473.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Rensselaer Polytechnic Institute, 12180-3590, Troy, NY",
"id": "http://www.grid.ac/institutes/grid.33647.35",
"name": [
"Rensselaer Polytechnic Institute, 12180-3590, Troy, NY"
],
"type": "Organization"
},
"familyName": "Selleck",
"givenName": "M. E.",
"id": "sg:person.012711606232.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012711606232.62"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02644687",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016149356",
"https://doi.org/10.1007/bf02644687"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf03186673",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005150977",
"https://doi.org/10.1007/bf03186673"
],
"type": "CreativeWork"
}
],
"datePublished": "1988-08",
"datePublishedReg": "1988-08-01",
"description": "Dendritic growth is one of the most common forms of crystallization in supercooled metals or al-loys. The isothermal dendritic growth experiment (IDGE) is a microgravity flight-oriented scientific experiment aimed at testing and developing dendritic growth theory at small supercoolings. In the case of dendrites grown from pure, supercooled melts, growth is controlled by diffusion-limited transport of heat, which causes temperature gradients to be present in the liquid phase. Thermal gradients can excite anisotropic convection which affects the growth velocity, overall crystal mor-phology, and distribution of heat and solute. Dendritic growth, by its nature, does not permit inde-pendent manipulation of parameters which would reduce the vigor of melt convection under terrestrial conditions. The reduction of gravity through free fall is the only practical way to allow observation of \u201cconvection free\u201d growth and thereby provide a test of dendritic growth theory. The IDGE is currently being developed at our laboratory, in collaboration with the NASA Lewis Research Center. The apparatus consists of a controlled thermostatic bath capable of millikelvin stability, a photographic data collection system, a crystal growth chamber ensuring \u201cfree\u201d dendritic growth, and an optical RAM crystal growth detection system to initiate data collection. The ex-periment will be essentially autonomous, since it will be located aboard the Materials Science Laboratory in the cargo bay of the space shuttle, where direct astronaut intervention is not possible. Limited interaction from the ground is planned through a number of preprogrammed computer com-mands. Previously conducted ground based studies will be described and the current approach to performing these studies in low earth orbit will be discussed.",
"genre": "article",
"id": "sg:pub.10.1007/bf02645198",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136292",
"issn": [
"1073-5623",
"1543-1940"
],
"name": "Metallurgical and Materials Transactions A",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "8",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "19"
}
],
"keywords": [
"Isothermal Dendritic Growth Experiment",
"dendritic growth theories",
"NASA Lewis Research Center",
"Lewis Research Center",
"materials science laboratory",
"dendritic growth",
"distribution of heat",
"reduction of gravity",
"crystal growth chamber",
"melt convection",
"diffusion-limited transport",
"low Earth orbit",
"microgravity experiments",
"al-loys",
"cargo bay",
"anisotropic convection",
"temperature gradient",
"thermal gradient",
"thermostatic bath",
"liquid phase",
"convection",
"Earth orbit",
"Space Shuttle",
"free fall",
"heat",
"collection system",
"terrestrial conditions",
"only practical way",
"small supercoolings",
"detection system",
"overall crystal",
"data collection system",
"gradient",
"velocity",
"experiments",
"growth experiments",
"supercooling",
"metals",
"growth velocity",
"practical way",
"system",
"melt",
"stability",
"ground",
"scientific experiments",
"growth theory",
"gravity",
"bath",
"Research Center",
"chamber",
"crystallization",
"parameters",
"transport",
"phase",
"Science Laboratory",
"apparatus",
"solutes",
"laboratory",
"conditions",
"crystals",
"test",
"distribution",
"growth",
"reduction",
"current approaches",
"theory",
"Bay",
"shuttle",
"limited interaction",
"orbit",
"approach",
"dendrites",
"computer",
"observations",
"study",
"manipulation",
"interaction",
"way",
"nature",
"number",
"data collection",
"cases",
"form",
"growth chamber",
"center",
"collection",
"fall",
"collaboration",
"common form",
"vigor",
"intervention"
],
"name": "Isothermal dendritic growth\u2014 a proposed microgravity experiment",
"pagination": "1945-1953",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1031518593"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02645198"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02645198",
"https://app.dimensions.ai/details/publication/pub.1031518593"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:50",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_192.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf02645198"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02645198'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02645198'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02645198'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02645198'
This table displays all metadata directly associated to this object as RDF triples.
206 TRIPLES
21 PREDICATES
121 URIs
108 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf02645198 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0912 |
5 | ″ | ″ | anzsrc-for:0913 |
6 | ″ | schema:author | N248ff2c35f4545d785b890969dc02229 |
7 | ″ | schema:citation | sg:pub.10.1007/bf02644687 |
8 | ″ | ″ | sg:pub.10.1007/bf03186673 |
9 | ″ | schema:datePublished | 1988-08 |
10 | ″ | schema:datePublishedReg | 1988-08-01 |
11 | ″ | schema:description | Dendritic growth is one of the most common forms of crystallization in supercooled metals or al-loys. The isothermal dendritic growth experiment (IDGE) is a microgravity flight-oriented scientific experiment aimed at testing and developing dendritic growth theory at small supercoolings. In the case of dendrites grown from pure, supercooled melts, growth is controlled by diffusion-limited transport of heat, which causes temperature gradients to be present in the liquid phase. Thermal gradients can excite anisotropic convection which affects the growth velocity, overall crystal mor-phology, and distribution of heat and solute. Dendritic growth, by its nature, does not permit inde-pendent manipulation of parameters which would reduce the vigor of melt convection under terrestrial conditions. The reduction of gravity through free fall is the only practical way to allow observation of “convection free” growth and thereby provide a test of dendritic growth theory. The IDGE is currently being developed at our laboratory, in collaboration with the NASA Lewis Research Center. The apparatus consists of a controlled thermostatic bath capable of millikelvin stability, a photographic data collection system, a crystal growth chamber ensuring “free” dendritic growth, and an optical RAM crystal growth detection system to initiate data collection. The ex-periment will be essentially autonomous, since it will be located aboard the Materials Science Laboratory in the cargo bay of the space shuttle, where direct astronaut intervention is not possible. Limited interaction from the ground is planned through a number of preprogrammed computer com-mands. Previously conducted ground based studies will be described and the current approach to performing these studies in low earth orbit will be discussed. |
12 | ″ | schema:genre | article |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N99a7130158cb4775a19b914c922797c5 |
15 | ″ | ″ | Nf2fdae14e129466ea8c4546f4ab8cd24 |
16 | ″ | ″ | sg:journal.1136292 |
17 | ″ | schema:keywords | Bay |
18 | ″ | ″ | Earth orbit |
19 | ″ | ″ | Isothermal Dendritic Growth Experiment |
20 | ″ | ″ | Lewis Research Center |
21 | ″ | ″ | NASA Lewis Research Center |
22 | ″ | ″ | Research Center |
23 | ″ | ″ | Science Laboratory |
24 | ″ | ″ | Space Shuttle |
25 | ″ | ″ | al-loys |
26 | ″ | ″ | anisotropic convection |
27 | ″ | ″ | apparatus |
28 | ″ | ″ | approach |
29 | ″ | ″ | bath |
30 | ″ | ″ | cargo bay |
31 | ″ | ″ | cases |
32 | ″ | ″ | center |
33 | ″ | ″ | chamber |
34 | ″ | ″ | collaboration |
35 | ″ | ″ | collection |
36 | ″ | ″ | collection system |
37 | ″ | ″ | common form |
38 | ″ | ″ | computer |
39 | ″ | ″ | conditions |
40 | ″ | ″ | convection |
41 | ″ | ″ | crystal growth chamber |
42 | ″ | ″ | crystallization |
43 | ″ | ″ | crystals |
44 | ″ | ″ | current approaches |
45 | ″ | ″ | data collection |
46 | ″ | ″ | data collection system |
47 | ″ | ″ | dendrites |
48 | ″ | ″ | dendritic growth |
49 | ″ | ″ | dendritic growth theories |
50 | ″ | ″ | detection system |
51 | ″ | ″ | diffusion-limited transport |
52 | ″ | ″ | distribution |
53 | ″ | ″ | distribution of heat |
54 | ″ | ″ | experiments |
55 | ″ | ″ | fall |
56 | ″ | ″ | form |
57 | ″ | ″ | free fall |
58 | ″ | ″ | gradient |
59 | ″ | ″ | gravity |
60 | ″ | ″ | ground |
61 | ″ | ″ | growth |
62 | ″ | ″ | growth chamber |
63 | ″ | ″ | growth experiments |
64 | ″ | ″ | growth theory |
65 | ″ | ″ | growth velocity |
66 | ″ | ″ | heat |
67 | ″ | ″ | interaction |
68 | ″ | ″ | intervention |
69 | ″ | ″ | laboratory |
70 | ″ | ″ | limited interaction |
71 | ″ | ″ | liquid phase |
72 | ″ | ″ | low Earth orbit |
73 | ″ | ″ | manipulation |
74 | ″ | ″ | materials science laboratory |
75 | ″ | ″ | melt |
76 | ″ | ″ | melt convection |
77 | ″ | ″ | metals |
78 | ″ | ″ | microgravity experiments |
79 | ″ | ″ | nature |
80 | ″ | ″ | number |
81 | ″ | ″ | observations |
82 | ″ | ″ | only practical way |
83 | ″ | ″ | orbit |
84 | ″ | ″ | overall crystal |
85 | ″ | ″ | parameters |
86 | ″ | ″ | phase |
87 | ″ | ″ | practical way |
88 | ″ | ″ | reduction |
89 | ″ | ″ | reduction of gravity |
90 | ″ | ″ | scientific experiments |
91 | ″ | ″ | shuttle |
92 | ″ | ″ | small supercoolings |
93 | ″ | ″ | solutes |
94 | ″ | ″ | stability |
95 | ″ | ″ | study |
96 | ″ | ″ | supercooling |
97 | ″ | ″ | system |
98 | ″ | ″ | temperature gradient |
99 | ″ | ″ | terrestrial conditions |
100 | ″ | ″ | test |
101 | ″ | ″ | theory |
102 | ″ | ″ | thermal gradient |
103 | ″ | ″ | thermostatic bath |
104 | ″ | ″ | transport |
105 | ″ | ″ | velocity |
106 | ″ | ″ | vigor |
107 | ″ | ″ | way |
108 | ″ | schema:name | Isothermal dendritic growth— a proposed microgravity experiment |
109 | ″ | schema:pagination | 1945-1953 |
110 | ″ | schema:productId | N83abffafa61648b589ecee27a28e3b55 |
111 | ″ | ″ | Ne7937e9a050541b18e635f91cc2993a5 |
112 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1031518593 |
113 | ″ | ″ | https://doi.org/10.1007/bf02645198 |
114 | ″ | schema:sdDatePublished | 2022-08-04T16:50 |
115 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
116 | ″ | schema:sdPublisher | N6a0511e57a204f7dbd7e145e3ff77478 |
117 | ″ | schema:url | https://doi.org/10.1007/bf02645198 |
118 | ″ | sgo:license | sg:explorer/license/ |
119 | ″ | sgo:sdDataset | articles |
120 | ″ | rdf:type | schema:ScholarlyArticle |
121 | N248ff2c35f4545d785b890969dc02229 | rdf:first | sg:person.010720014261.43 |
122 | ″ | rdf:rest | Nf6ca7f0d732d4096a73b989d2e911382 |
123 | N6a0511e57a204f7dbd7e145e3ff77478 | schema:name | Springer Nature - SN SciGraph project |
124 | ″ | rdf:type | schema:Organization |
125 | N83abffafa61648b589ecee27a28e3b55 | schema:name | doi |
126 | ″ | schema:value | 10.1007/bf02645198 |
127 | ″ | rdf:type | schema:PropertyValue |
128 | N99a7130158cb4775a19b914c922797c5 | schema:issueNumber | 8 |
129 | ″ | rdf:type | schema:PublicationIssue |
130 | Na01393b428594883897ab56aaac7b992 | rdf:first | sg:person.011513330527.45 |
131 | ″ | rdf:rest | Ned308f1bdd0441528e7767a7e94ffcd6 |
132 | Nc011f3f909614679966c7fed2862eca7 | rdf:first | sg:person.012711606232.62 |
133 | ″ | rdf:rest | rdf:nil |
134 | Ne37d84c4fdd84c92aead22f4118bb3b0 | rdf:first | sg:person.010743726473.48 |
135 | ″ | rdf:rest | Nc011f3f909614679966c7fed2862eca7 |
136 | Ne7937e9a050541b18e635f91cc2993a5 | schema:name | dimensions_id |
137 | ″ | schema:value | pub.1031518593 |
138 | ″ | rdf:type | schema:PropertyValue |
139 | Ned308f1bdd0441528e7767a7e94ffcd6 | rdf:first | sg:person.016346154162.06 |
140 | ″ | rdf:rest | Ne37d84c4fdd84c92aead22f4118bb3b0 |
141 | Nf2fdae14e129466ea8c4546f4ab8cd24 | schema:volumeNumber | 19 |
142 | ″ | rdf:type | schema:PublicationVolume |
143 | Nf6ca7f0d732d4096a73b989d2e911382 | rdf:first | sg:person.011404402162.26 |
144 | ″ | rdf:rest | Na01393b428594883897ab56aaac7b992 |
145 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
146 | ″ | schema:name | Chemical Sciences |
147 | ″ | rdf:type | schema:DefinedTerm |
148 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
149 | ″ | schema:name | Physical Chemistry (incl. Structural) |
150 | ″ | rdf:type | schema:DefinedTerm |
151 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
152 | ″ | schema:name | Engineering |
153 | ″ | rdf:type | schema:DefinedTerm |
154 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
155 | ″ | schema:name | Materials Engineering |
156 | ″ | rdf:type | schema:DefinedTerm |
157 | anzsrc-for:0913 | schema:inDefinedTermSet | anzsrc-for: |
158 | ″ | schema:name | Mechanical Engineering |
159 | ″ | rdf:type | schema:DefinedTerm |
160 | sg:journal.1136292 | schema:issn | 1073-5623 |
161 | ″ | ″ | 1543-1940 |
162 | ″ | schema:name | Metallurgical and Materials Transactions A |
163 | ″ | schema:publisher | Springer Nature |
164 | ″ | rdf:type | schema:Periodical |
165 | sg:person.010720014261.43 | schema:affiliation | grid-institutes:grid.33647.35 |
166 | ″ | schema:familyName | Glicksman |
167 | ″ | schema:givenName | M. E. |
168 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43 |
169 | ″ | rdf:type | schema:Person |
170 | sg:person.010743726473.48 | schema:affiliation | grid-institutes:grid.33647.35 |
171 | ″ | schema:familyName | Tirmizi |
172 | ″ | schema:givenName | S. H. |
173 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010743726473.48 |
174 | ″ | rdf:type | schema:Person |
175 | sg:person.011404402162.26 | schema:affiliation | grid-institutes:None |
176 | ″ | schema:familyName | Winsa |
177 | ″ | schema:givenName | E. |
178 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404402162.26 |
179 | ″ | rdf:type | schema:Person |
180 | sg:person.011513330527.45 | schema:affiliation | grid-institutes:grid.33647.35 |
181 | ″ | schema:familyName | Hahn |
182 | ″ | schema:givenName | R. C. |
183 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011513330527.45 |
184 | ″ | rdf:type | schema:Person |
185 | sg:person.012711606232.62 | schema:affiliation | grid-institutes:grid.33647.35 |
186 | ″ | schema:familyName | Selleck |
187 | ″ | schema:givenName | M. E. |
188 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012711606232.62 |
189 | ″ | rdf:type | schema:Person |
190 | sg:person.016346154162.06 | schema:affiliation | grid-institutes:grid.33647.35 |
191 | ″ | schema:familyName | Lograsso |
192 | ″ | schema:givenName | T. A. |
193 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016346154162.06 |
194 | ″ | rdf:type | schema:Person |
195 | sg:pub.10.1007/bf02644687 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016149356 |
196 | ″ | ″ | https://doi.org/10.1007/bf02644687 |
197 | ″ | rdf:type | schema:CreativeWork |
198 | sg:pub.10.1007/bf03186673 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005150977 |
199 | ″ | ″ | https://doi.org/10.1007/bf03186673 |
200 | ″ | rdf:type | schema:CreativeWork |
201 | grid-institutes:None | schema:alternateName | NASA Lewis Re- search Center, 44135, Cleveland, OH |
202 | ″ | schema:name | NASA Lewis Re- search Center, 44135, Cleveland, OH |
203 | ″ | rdf:type | schema:Organization |
204 | grid-institutes:grid.33647.35 | schema:alternateName | Rensselaer Polytechnic Institute, 12180-3590, Troy, NY |
205 | ″ | schema:name | Rensselaer Polytechnic Institute, 12180-3590, Troy, NY |
206 | ″ | rdf:type | schema:Organization |