The Effect of Rapid Solidification Velocity on the Microstructure of Ag-Cu Alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-01

AUTHORS

W. J. Boettinger, D. Shechtman, R. J. Schaefer, F. S. Biancaniello

ABSTRACT

Electron beam solidification passes have been performed on a series of Ag-Cu alloys between 1 wt pct Cu and the eutectic composition (28.1 wt pct Cu) at speeds between 1.5 and 400 cm per second. At low growth rates conventional dendritic or eutectic structures are obtained. The maximum growth rate of eutectic structure is 2.5 cm per second. At high growth rates microsegregation-free single phase structures are obtained for all compositions. The velocity required to produce this structure increases with composition for dilute alloys and agrees with the theory of absolute stability of a planar liquid-solid interface with equilibrium partitioning. For alloys between 15 and 28 wt pct Cu, the velocity required to produce the microsegregation-free extended solid solution decreases with composition and is related to nonequilibrium trapping of solute at the liquid solid interface. At intermediate growth rates for alloys with 9 wt pct Cu or greater, a structure consisting of alternating bands of cellular and cell-free material is obtained. The bands form approximately parallel to the local interface. More... »

PAGES

55-66

References to SciGraph publications

  • 1980-03. The Ag−Cu (Silver-Copper) system in JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION
  • 1977-09. The structure of the γ′ extended solid solution in a splat-cooled Ag-50 at.% Cu alloy in JOURNAL OF MATERIALS SCIENCE
  • 1973-09. Metastable phases produced by laser melt quenching in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1982-11. The constitution and phase stability of overlapping melt trails in Ag- Cu alloys produced by continuous laser melt quenching in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1981-03. Rapid melting and solidification of a surface due to a moving heat flux in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02644387

    DOI

    http://dx.doi.org/10.1007/bf02644387

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001734513


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Metallurgy Division, Center for Materials Science, National Bureau of Standards, 20234, Washington, DC", 
              "id": "http://www.grid.ac/institutes/grid.94225.38", 
              "name": [
                "Metallurgy Division, Center for Materials Science, National Bureau of Standards, 20234, Washington, DC"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boettinger", 
            "givenName": "W. J.", 
            "id": "sg:person.013276032373.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013276032373.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Engineering, Technion, Haifa, Israel", 
              "id": "http://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "Department of Materials Engineering, Technion, Haifa, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shechtman", 
            "givenName": "D.", 
            "id": "sg:person.016012546611.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016012546611.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Metallurgy Division, Center for Materials Science, National Bureau of Standards, 20234, Washington, DC", 
              "id": "http://www.grid.ac/institutes/grid.94225.38", 
              "name": [
                "Metallurgy Division, Center for Materials Science, National Bureau of Standards, 20234, Washington, DC"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schaefer", 
            "givenName": "R. J.", 
            "id": "sg:person.016114210173.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016114210173.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Metallurgy Division, Center for Materials Science, National Bureau of Standards, 20234, Washington, DC", 
              "id": "http://www.grid.ac/institutes/grid.94225.38", 
              "name": [
                "Metallurgy Division, Center for Materials Science, National Bureau of Standards, 20234, Washington, DC"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Biancaniello", 
            "givenName": "F. S.", 
            "id": "sg:person.013155451173.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013155451173.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02645931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048140631", 
              "https://doi.org/10.1007/bf02645931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02643264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027664613", 
              "https://doi.org/10.1007/bf02643264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02883284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041642291", 
              "https://doi.org/10.1007/bf02883284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00566250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015748110", 
              "https://doi.org/10.1007/bf00566250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02674756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043294457", 
              "https://doi.org/10.1007/bf02674756"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1984-01", 
        "datePublishedReg": "1984-01-01", 
        "description": "Electron beam solidification passes have been performed on a series of Ag-Cu alloys between 1 wt pct Cu and the eutectic composition (28.1 wt pct Cu) at speeds between 1.5 and 400 cm per second. At low growth rates conventional dendritic or eutectic structures are obtained. The maximum growth rate of eutectic structure is 2.5 cm per second. At high growth rates microsegregation-free single phase structures are obtained for all compositions. The velocity required to produce this structure increases with composition for dilute alloys and agrees with the theory of absolute stability of a planar liquid-solid interface with equilibrium partitioning. For alloys between 15 and 28 wt pct Cu, the velocity required to produce the microsegregation-free extended solid solution decreases with composition and is related to nonequilibrium trapping of solute at the liquid solid interface. At intermediate growth rates for alloys with 9 wt pct Cu or greater, a structure consisting of alternating bands of cellular and cell-free material is obtained. The bands form approximately parallel to the local interface.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02644387", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "eutectic structure", 
          "planar liquid-solid interface", 
          "liquid-solid interface", 
          "Ag-Cu alloy", 
          "liquid solid interface", 
          "Ag-Cu", 
          "solid solution decreases", 
          "single phase structure", 
          "solidification velocity", 
          "alloy", 
          "solid interface", 
          "phase structure", 
          "eutectic composition", 
          "cell-free material", 
          "dilute alloys", 
          "velocity", 
          "interface", 
          "solution decreases", 
          "local interface", 
          "equilibrium partitioning", 
          "microstructure", 
          "wt", 
          "Cu", 
          "maximum growth rate", 
          "structure", 
          "growth rate", 
          "speed", 
          "passes", 
          "materials", 
          "intermediate growth rates", 
          "composition", 
          "stability", 
          "absolute stability", 
          "trapping", 
          "solutes", 
          "band", 
          "seconds", 
          "rate", 
          "dendritic", 
          "effect", 
          "decrease", 
          "partitioning", 
          "theory", 
          "series", 
          "Electron beam solidification passes", 
          "beam solidification passes", 
          "solidification passes", 
          "low growth rates conventional dendritic", 
          "growth rates conventional dendritic", 
          "rates conventional dendritic", 
          "conventional dendritic", 
          "high growth rates microsegregation-free single phase structures", 
          "growth rates microsegregation-free single phase structures", 
          "rates microsegregation-free single phase structures", 
          "microsegregation-free single phase structures", 
          "microsegregation-free extended solid solution decreases", 
          "extended solid solution decreases", 
          "nonequilibrium trapping", 
          "Rapid Solidification Velocity"
        ], 
        "name": "The Effect of Rapid Solidification Velocity on the Microstructure of Ag-Cu Alloys", 
        "pagination": "55-66", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001734513"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02644387"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02644387", 
          "https://app.dimensions.ai/details/publication/pub.1001734513"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_173.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02644387"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02644387'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02644387'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02644387'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02644387'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      22 PREDICATES      90 URIs      77 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02644387 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Na259e5b8b31c4541b559eb86a1086f35
    4 schema:citation sg:pub.10.1007/bf00566250
    5 sg:pub.10.1007/bf02643264
    6 sg:pub.10.1007/bf02645931
    7 sg:pub.10.1007/bf02674756
    8 sg:pub.10.1007/bf02883284
    9 schema:datePublished 1984-01
    10 schema:datePublishedReg 1984-01-01
    11 schema:description Electron beam solidification passes have been performed on a series of Ag-Cu alloys between 1 wt pct Cu and the eutectic composition (28.1 wt pct Cu) at speeds between 1.5 and 400 cm per second. At low growth rates conventional dendritic or eutectic structures are obtained. The maximum growth rate of eutectic structure is 2.5 cm per second. At high growth rates microsegregation-free single phase structures are obtained for all compositions. The velocity required to produce this structure increases with composition for dilute alloys and agrees with the theory of absolute stability of a planar liquid-solid interface with equilibrium partitioning. For alloys between 15 and 28 wt pct Cu, the velocity required to produce the microsegregation-free extended solid solution decreases with composition and is related to nonequilibrium trapping of solute at the liquid solid interface. At intermediate growth rates for alloys with 9 wt pct Cu or greater, a structure consisting of alternating bands of cellular and cell-free material is obtained. The bands form approximately parallel to the local interface.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf Na90fe1bc1b274eafb04d8b8eaa0b09a8
    16 Nc53b7c24f5b94badab7b927184abfcdd
    17 sg:journal.1136292
    18 schema:keywords Ag-Cu
    19 Ag-Cu alloy
    20 Cu
    21 Electron beam solidification passes
    22 Rapid Solidification Velocity
    23 absolute stability
    24 alloy
    25 band
    26 beam solidification passes
    27 cell-free material
    28 composition
    29 conventional dendritic
    30 decrease
    31 dendritic
    32 dilute alloys
    33 effect
    34 equilibrium partitioning
    35 eutectic composition
    36 eutectic structure
    37 extended solid solution decreases
    38 growth rate
    39 growth rates conventional dendritic
    40 growth rates microsegregation-free single phase structures
    41 high growth rates microsegregation-free single phase structures
    42 interface
    43 intermediate growth rates
    44 liquid solid interface
    45 liquid-solid interface
    46 local interface
    47 low growth rates conventional dendritic
    48 materials
    49 maximum growth rate
    50 microsegregation-free extended solid solution decreases
    51 microsegregation-free single phase structures
    52 microstructure
    53 nonequilibrium trapping
    54 partitioning
    55 passes
    56 phase structure
    57 planar liquid-solid interface
    58 rate
    59 rates conventional dendritic
    60 rates microsegregation-free single phase structures
    61 seconds
    62 series
    63 single phase structure
    64 solid interface
    65 solid solution decreases
    66 solidification passes
    67 solidification velocity
    68 solutes
    69 solution decreases
    70 speed
    71 stability
    72 structure
    73 theory
    74 trapping
    75 velocity
    76 wt
    77 schema:name The Effect of Rapid Solidification Velocity on the Microstructure of Ag-Cu Alloys
    78 schema:pagination 55-66
    79 schema:productId N3a52912b82fb4fb2874ea013b7983bd1
    80 N61f82fdc7fb04842872d7d50fa0789e9
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001734513
    82 https://doi.org/10.1007/bf02644387
    83 schema:sdDatePublished 2021-12-01T19:05
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher Nd93205db62e14b1388b4f9f59e94cd6c
    86 schema:url https://doi.org/10.1007/bf02644387
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N163b67d27bef4cf184db47835ea661f7 rdf:first sg:person.016012546611.81
    91 rdf:rest Neca53e4bab35475bb9f2149af9754a95
    92 N3a52912b82fb4fb2874ea013b7983bd1 schema:name dimensions_id
    93 schema:value pub.1001734513
    94 rdf:type schema:PropertyValue
    95 N504403c9657e4866a14804953246cee8 rdf:first sg:person.013155451173.23
    96 rdf:rest rdf:nil
    97 N61f82fdc7fb04842872d7d50fa0789e9 schema:name doi
    98 schema:value 10.1007/bf02644387
    99 rdf:type schema:PropertyValue
    100 Na259e5b8b31c4541b559eb86a1086f35 rdf:first sg:person.013276032373.22
    101 rdf:rest N163b67d27bef4cf184db47835ea661f7
    102 Na90fe1bc1b274eafb04d8b8eaa0b09a8 schema:volumeNumber 15
    103 rdf:type schema:PublicationVolume
    104 Nc53b7c24f5b94badab7b927184abfcdd schema:issueNumber 1
    105 rdf:type schema:PublicationIssue
    106 Nd93205db62e14b1388b4f9f59e94cd6c schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 Neca53e4bab35475bb9f2149af9754a95 rdf:first sg:person.016114210173.27
    109 rdf:rest N504403c9657e4866a14804953246cee8
    110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Engineering
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Materials Engineering
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1136292 schema:issn 1073-5623
    117 1543-1940
    118 schema:name Metallurgical and Materials Transactions A
    119 schema:publisher Springer Nature
    120 rdf:type schema:Periodical
    121 sg:person.013155451173.23 schema:affiliation grid-institutes:grid.94225.38
    122 schema:familyName Biancaniello
    123 schema:givenName F. S.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013155451173.23
    125 rdf:type schema:Person
    126 sg:person.013276032373.22 schema:affiliation grid-institutes:grid.94225.38
    127 schema:familyName Boettinger
    128 schema:givenName W. J.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013276032373.22
    130 rdf:type schema:Person
    131 sg:person.016012546611.81 schema:affiliation grid-institutes:grid.6451.6
    132 schema:familyName Shechtman
    133 schema:givenName D.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016012546611.81
    135 rdf:type schema:Person
    136 sg:person.016114210173.27 schema:affiliation grid-institutes:grid.94225.38
    137 schema:familyName Schaefer
    138 schema:givenName R. J.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016114210173.27
    140 rdf:type schema:Person
    141 sg:pub.10.1007/bf00566250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015748110
    142 https://doi.org/10.1007/bf00566250
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/bf02643264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027664613
    145 https://doi.org/10.1007/bf02643264
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/bf02645931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048140631
    148 https://doi.org/10.1007/bf02645931
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/bf02674756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043294457
    151 https://doi.org/10.1007/bf02674756
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/bf02883284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041642291
    154 https://doi.org/10.1007/bf02883284
    155 rdf:type schema:CreativeWork
    156 grid-institutes:grid.6451.6 schema:alternateName Department of Materials Engineering, Technion, Haifa, Israel
    157 schema:name Department of Materials Engineering, Technion, Haifa, Israel
    158 rdf:type schema:Organization
    159 grid-institutes:grid.94225.38 schema:alternateName Metallurgy Division, Center for Materials Science, National Bureau of Standards, 20234, Washington, DC
    160 schema:name Metallurgy Division, Center for Materials Science, National Bureau of Standards, 20234, Washington, DC
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...