Ontology type: schema:ScholarlyArticle
1974-08
AUTHORS ABSTRACTA set of thermodynamic functions for the tabulation of thermochemical data is proposed which seems to offer a satisfactory basis for the calculation of chemical equilibria and heat balances in metallurgy. The selection and evaluation of these functions are based on simple definitions which follow directly from the basic relationships in chemical thermodynamics. Apart from the temperature,T, and the heat capacity,Cp, the following functions are used: the enthalpy,H, the entropy,S, the Gibbs energy, G, and the betafunction, β, butH, G andβ not in the form most commonly employed, for instance in the JANAF tables. No use is made of the so-called free energy function, nor the parameters for the formation of the substance in question from the elements at a temperatureT. As is shown in an example, the form chosen by JANAF for the tabulation of,e.g., the enthalpy may in special cases not produce the optimum presentation for the evaluation of energy balances. More... »
PAGES1769-1771
http://scigraph.springernature.com/pub.10.1007/bf02644139
DOIhttp://dx.doi.org/10.1007/bf02644139
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026747864
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Resources Engineering and Extractive Metallurgy",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Lehrstuhl f\u00fcr Metallurgie der Kernbrennstoffe und Theoretische H\u00fcttenkurid, Technische Hochschule Aachen, Germany",
"id": "http://www.grid.ac/institutes/grid.1957.a",
"name": [
"Lehrstuhl f\u00fcr Metallurgie der Kernbrennstoffe und Theoretische H\u00fcttenkurid, Technische Hochschule Aachen, Germany"
],
"type": "Organization"
},
"familyName": "Barin",
"givenName": "I.",
"id": "sg:person.014141317504.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014141317504.01"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Lehrstuhl f\u00fcr Metallurgie der Kernbrennstoffe und Theoretische H\u00fcttenkurid, Technische Hochschule Aachen, Germany",
"id": "http://www.grid.ac/institutes/grid.1957.a",
"name": [
"Lehrstuhl f\u00fcr Metallurgie der Kernbrennstoffe und Theoretische H\u00fcttenkurid, Technische Hochschule Aachen, Germany"
],
"type": "Organization"
},
"familyName": "Knacke",
"givenName": "O.",
"id": "sg:person.014211731253.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211731253.81"
],
"type": "Person"
}
],
"datePublished": "1974-08",
"datePublishedReg": "1974-08-01",
"description": "A set of thermodynamic functions for the tabulation of thermochemical data is proposed which seems to offer a satisfactory basis for the calculation of chemical equilibria and heat balances in metallurgy. The selection and evaluation of these functions are based on simple definitions which follow directly from the basic relationships in chemical thermodynamics. Apart from the temperature,T, and the heat capacity,Cp, the following functions are used: the enthalpy,H, the entropy,S, the Gibbs energy, G, and the betafunction, \u03b2, butH, G and\u03b2 not in the form most commonly employed, for instance in the JANAF tables. No use is made of the so-called free energy function, nor the parameters for the formation of the substance in question from the elements at a temperatureT. As is shown in an example, the form chosen by JANAF for the tabulation of,e.g., the enthalpy may in special cases not produce the optimum presentation for the evaluation of energy balances.",
"genre": "article",
"id": "sg:pub.10.1007/bf02644139",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136775",
"issn": [
"1073-5615",
"1543-1916"
],
"name": "Metallurgical and Materials Transactions B",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "8",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "5"
}
],
"keywords": [
"thermochemical data",
"chemical thermodynamics",
"chemical equilibrium",
"Gibbs energy",
"thermochemical functions",
"thermodynamic functions",
"enthalpy",
"JANAF tables",
"free energy function",
"thermodynamics",
"heat capacity",
"energy function",
"formation",
"calculations",
"equilibrium",
"temperature",
"energy",
"substances",
"JANAF",
"capacity",
"form",
"CP",
"and\u03b2",
"basis",
"metallurgy",
"basic relationships",
"parameters",
"function",
"evaluation",
"use",
"elements",
"example",
"tabulation",
"balance",
"set",
"data",
"relationship",
"instances",
"cases",
"satisfactory basis",
"heat balance",
"selection",
"table",
"energy balance",
"simple definition",
"special case",
"definition",
"questions",
"presentation",
"buth",
"optimum presentation"
],
"name": "Simplified thermochemical functions for tabulation",
"pagination": "1769-1771",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026747864"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02644139"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02644139",
"https://app.dimensions.ai/details/publication/pub.1026747864"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_128.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf02644139"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02644139'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02644139'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02644139'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02644139'
This table displays all metadata directly associated to this object as RDF triples.
120 TRIPLES
21 PREDICATES
78 URIs
69 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf02644139 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0904 |
3 | ″ | ″ | anzsrc-for:0914 |
4 | ″ | schema:author | Nda98a07418be4554905cd7e0e731288e |
5 | ″ | schema:datePublished | 1974-08 |
6 | ″ | schema:datePublishedReg | 1974-08-01 |
7 | ″ | schema:description | A set of thermodynamic functions for the tabulation of thermochemical data is proposed which seems to offer a satisfactory basis for the calculation of chemical equilibria and heat balances in metallurgy. The selection and evaluation of these functions are based on simple definitions which follow directly from the basic relationships in chemical thermodynamics. Apart from the temperature,T, and the heat capacity,Cp, the following functions are used: the enthalpy,H, the entropy,S, the Gibbs energy, G, and the betafunction, β, butH, G andβ not in the form most commonly employed, for instance in the JANAF tables. No use is made of the so-called free energy function, nor the parameters for the formation of the substance in question from the elements at a temperatureT. As is shown in an example, the form chosen by JANAF for the tabulation of,e.g., the enthalpy may in special cases not produce the optimum presentation for the evaluation of energy balances. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N8cfab12f49874439ac51b537d81b38d0 |
12 | ″ | ″ | N93576bafd6d041e8b4ba6ea421c4bf58 |
13 | ″ | ″ | sg:journal.1136775 |
14 | ″ | schema:keywords | CP |
15 | ″ | ″ | Gibbs energy |
16 | ″ | ″ | JANAF |
17 | ″ | ″ | JANAF tables |
18 | ″ | ″ | andβ |
19 | ″ | ″ | balance |
20 | ″ | ″ | basic relationships |
21 | ″ | ″ | basis |
22 | ″ | ″ | buth |
23 | ″ | ″ | calculations |
24 | ″ | ″ | capacity |
25 | ″ | ″ | cases |
26 | ″ | ″ | chemical equilibrium |
27 | ″ | ″ | chemical thermodynamics |
28 | ″ | ″ | data |
29 | ″ | ″ | definition |
30 | ″ | ″ | elements |
31 | ″ | ″ | energy |
32 | ″ | ″ | energy balance |
33 | ″ | ″ | energy function |
34 | ″ | ″ | enthalpy |
35 | ″ | ″ | equilibrium |
36 | ″ | ″ | evaluation |
37 | ″ | ″ | example |
38 | ″ | ″ | form |
39 | ″ | ″ | formation |
40 | ″ | ″ | free energy function |
41 | ″ | ″ | function |
42 | ″ | ″ | heat balance |
43 | ″ | ″ | heat capacity |
44 | ″ | ″ | instances |
45 | ″ | ″ | metallurgy |
46 | ″ | ″ | optimum presentation |
47 | ″ | ″ | parameters |
48 | ″ | ″ | presentation |
49 | ″ | ″ | questions |
50 | ″ | ″ | relationship |
51 | ″ | ″ | satisfactory basis |
52 | ″ | ″ | selection |
53 | ″ | ″ | set |
54 | ″ | ″ | simple definition |
55 | ″ | ″ | special case |
56 | ″ | ″ | substances |
57 | ″ | ″ | table |
58 | ″ | ″ | tabulation |
59 | ″ | ″ | temperature |
60 | ″ | ″ | thermochemical data |
61 | ″ | ″ | thermochemical functions |
62 | ″ | ″ | thermodynamic functions |
63 | ″ | ″ | thermodynamics |
64 | ″ | ″ | use |
65 | ″ | schema:name | Simplified thermochemical functions for tabulation |
66 | ″ | schema:pagination | 1769-1771 |
67 | ″ | schema:productId | N1814645dd8314279b599db48d5e56547 |
68 | ″ | ″ | N9c5c74e24d1641188f8514f9e4a6e2d8 |
69 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026747864 |
70 | ″ | ″ | https://doi.org/10.1007/bf02644139 |
71 | ″ | schema:sdDatePublished | 2022-05-10T09:39 |
72 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
73 | ″ | schema:sdPublisher | N72d23e6138944228819f5475f1ef50f4 |
74 | ″ | schema:url | https://doi.org/10.1007/bf02644139 |
75 | ″ | sgo:license | sg:explorer/license/ |
76 | ″ | sgo:sdDataset | articles |
77 | ″ | rdf:type | schema:ScholarlyArticle |
78 | N1814645dd8314279b599db48d5e56547 | schema:name | doi |
79 | ″ | schema:value | 10.1007/bf02644139 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N72d23e6138944228819f5475f1ef50f4 | schema:name | Springer Nature - SN SciGraph project |
82 | ″ | rdf:type | schema:Organization |
83 | N8cfab12f49874439ac51b537d81b38d0 | schema:volumeNumber | 5 |
84 | ″ | rdf:type | schema:PublicationVolume |
85 | N93576bafd6d041e8b4ba6ea421c4bf58 | schema:issueNumber | 8 |
86 | ″ | rdf:type | schema:PublicationIssue |
87 | N9c5c74e24d1641188f8514f9e4a6e2d8 | schema:name | dimensions_id |
88 | ″ | schema:value | pub.1026747864 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | Nda4d611e56b747889f7875ccb4de0b73 | rdf:first | sg:person.014211731253.81 |
91 | ″ | rdf:rest | rdf:nil |
92 | Nda98a07418be4554905cd7e0e731288e | rdf:first | sg:person.014141317504.01 |
93 | ″ | rdf:rest | Nda4d611e56b747889f7875ccb4de0b73 |
94 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Engineering |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | anzsrc-for:0904 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Chemical Engineering |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | anzsrc-for:0914 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Resources Engineering and Extractive Metallurgy |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | sg:journal.1136775 | schema:issn | 1073-5615 |
104 | ″ | ″ | 1543-1916 |
105 | ″ | schema:name | Metallurgical and Materials Transactions B |
106 | ″ | schema:publisher | Springer Nature |
107 | ″ | rdf:type | schema:Periodical |
108 | sg:person.014141317504.01 | schema:affiliation | grid-institutes:grid.1957.a |
109 | ″ | schema:familyName | Barin |
110 | ″ | schema:givenName | I. |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014141317504.01 |
112 | ″ | rdf:type | schema:Person |
113 | sg:person.014211731253.81 | schema:affiliation | grid-institutes:grid.1957.a |
114 | ″ | schema:familyName | Knacke |
115 | ″ | schema:givenName | O. |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211731253.81 |
117 | ″ | rdf:type | schema:Person |
118 | grid-institutes:grid.1957.a | schema:alternateName | Lehrstuhl für Metallurgie der Kernbrennstoffe und Theoretische Hüttenkurid, Technische Hochschule Aachen, Germany |
119 | ″ | schema:name | Lehrstuhl für Metallurgie der Kernbrennstoffe und Theoretische Hüttenkurid, Technische Hochschule Aachen, Germany |
120 | ″ | rdf:type | schema:Organization |