Effect of Thorium Additions on Metallurgical and Mechanical Properties of Ir-0.3 pct W Alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-06

AUTHORS

C. T. Liu, H. Inouye, A. C. Schaffhauser

ABSTRACT

Metallurgical and mechanical properties of Ir-0.3 pct W alloys have been studied as a function of thorium concentration in the range 0 to 1000 ppm by weight. The solubility limit of thorium in Ir-0.3 pct W is below 30 ppm. Above this limit, the excess thorium reacts with iridium to form second-phase particles. Thorium additions raise the recrystallization temperature and effectively retard grain growth at high temperatures. Tensile tests at 650 °C show that the alloy without thorium additions (undoped alloy) fractured by grain-boundary (GB) separation, while the alloys doped with less than 500 ppm thorium failed mainly by transgranular fracture at 650 °C. Intergranular fracture in the doped alloys is supressed by GB segregation of thorium, which improves the mechanical properties of the boundary. The impact properties of the alloys were correlated with test temperature, grain size, and heat treatment. The impact ductility increases with test temperature and decreases with grain size. For a given grain size, particularly in the fine-grain size range, the thorium-doped alloys are much more ductile and resistant to GB fracture. All of these results can be correlated on the basis of stress concentration on GBs by using a dislocation pileup model. More... »

PAGES

993-1002

References to SciGraph publications

  • 1978-04. Brittle fracture in iridium in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1979-06. The effect of trace element additions on the grain boundary composition of Ir + 0.3 pct W alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02643480

    DOI

    http://dx.doi.org/10.1007/bf02643480

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017433988


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory, 37830, Oak Ridge, TN", 
              "id": "http://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Oak Ridge National Laboratory, 37830, Oak Ridge, TN"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "C. T.", 
            "id": "sg:person.011275665477.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275665477.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory, 37830, Oak Ridge, TN", 
              "id": "http://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Oak Ridge National Laboratory, 37830, Oak Ridge, TN"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Inouye", 
            "givenName": "H.", 
            "id": "sg:person.016645616061.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645616061.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory, 37830, Oak Ridge, TN", 
              "id": "http://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Oak Ridge National Laboratory, 37830, Oak Ridge, TN"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schaffhauser", 
            "givenName": "A. C.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02646403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004117612", 
              "https://doi.org/10.1007/bf02646403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02658389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006498661", 
              "https://doi.org/10.1007/bf02658389"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1981-06", 
        "datePublishedReg": "1981-06-01", 
        "description": "Metallurgical and mechanical properties of Ir-0.3 pct W alloys have been studied as a function of thorium concentration in the range 0 to 1000 ppm by weight. The solubility limit of thorium in Ir-0.3 pct W is below 30 ppm. Above this limit, the excess thorium reacts with iridium to form second-phase particles. Thorium additions raise the recrystallization temperature and effectively retard grain growth at high temperatures. Tensile tests at 650 \u00b0C show that the alloy without thorium additions (undoped alloy) fractured by grain-boundary (GB) separation, while the alloys doped with less than 500 ppm thorium failed mainly by transgranular fracture at 650 \u00b0C. Intergranular fracture in the doped alloys is supressed by GB segregation of thorium, which improves the mechanical properties of the boundary. The impact properties of the alloys were correlated with test temperature, grain size, and heat treatment. The impact ductility increases with test temperature and decreases with grain size. For a given grain size, particularly in the fine-grain size range, the thorium-doped alloys are much more ductile and resistant to GB fracture. All of these results can be correlated on the basis of stress concentration on GBs by using a dislocation pileup model.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02643480", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "mechanical properties", 
          "grain size", 
          "thorium additions", 
          "test temperature", 
          "second-phase particles", 
          "dislocation pileup model", 
          "grain-boundary separation", 
          "impact ductility", 
          "transgranular fracture", 
          "intergranular fracture", 
          "impact properties", 
          "tensile tests", 
          "more ductile", 
          "stress concentration", 
          "recrystallization temperature", 
          "pct W", 
          "grain growth", 
          "alloy", 
          "heat treatment", 
          "pileup model", 
          "GB segregation", 
          "GB fracture", 
          "solubility limit", 
          "high temperature", 
          "ppm thorium", 
          "temperature", 
          "size range", 
          "properties", 
          "ductility", 
          "ductile", 
          "fractures", 
          "range 0", 
          "particles", 
          "size", 
          "thorium", 
          "ppm", 
          "boundaries", 
          "separation", 
          "limit", 
          "addition", 
          "segregation", 
          "concentration", 
          "range", 
          "test", 
          "model", 
          "iridium", 
          "thorium concentrations", 
          "results", 
          "effect", 
          "GB", 
          "growth", 
          "basis", 
          "function", 
          "weight", 
          "treatment", 
          "Ir-0.3 pct W alloys", 
          "pct W alloys", 
          "W alloys", 
          "Ir-0.3 pct W", 
          "excess thorium", 
          "fine-grain size range", 
          "thorium-doped alloys"
        ], 
        "name": "Effect of Thorium Additions on Metallurgical and Mechanical Properties of Ir-0.3 pct W Alloys", 
        "pagination": "993-1002", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017433988"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02643480"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02643480", 
          "https://app.dimensions.ai/details/publication/pub.1017433988"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T17:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_175.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02643480"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02643480'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02643480'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02643480'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02643480'


     

    This table displays all metadata directly associated to this object as RDF triples.

    141 TRIPLES      22 PREDICATES      90 URIs      80 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02643480 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Na8c4d53b43c54a55aa81f84bef910c9c
    4 schema:citation sg:pub.10.1007/bf02646403
    5 sg:pub.10.1007/bf02658389
    6 schema:datePublished 1981-06
    7 schema:datePublishedReg 1981-06-01
    8 schema:description Metallurgical and mechanical properties of Ir-0.3 pct W alloys have been studied as a function of thorium concentration in the range 0 to 1000 ppm by weight. The solubility limit of thorium in Ir-0.3 pct W is below 30 ppm. Above this limit, the excess thorium reacts with iridium to form second-phase particles. Thorium additions raise the recrystallization temperature and effectively retard grain growth at high temperatures. Tensile tests at 650 °C show that the alloy without thorium additions (undoped alloy) fractured by grain-boundary (GB) separation, while the alloys doped with less than 500 ppm thorium failed mainly by transgranular fracture at 650 °C. Intergranular fracture in the doped alloys is supressed by GB segregation of thorium, which improves the mechanical properties of the boundary. The impact properties of the alloys were correlated with test temperature, grain size, and heat treatment. The impact ductility increases with test temperature and decreases with grain size. For a given grain size, particularly in the fine-grain size range, the thorium-doped alloys are much more ductile and resistant to GB fracture. All of these results can be correlated on the basis of stress concentration on GBs by using a dislocation pileup model.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N5248195b59334371996ebd9d70ac1d98
    13 Na61be80bc31a4880ab50acf4dd9e9262
    14 sg:journal.1136292
    15 schema:keywords GB
    16 GB fracture
    17 GB segregation
    18 Ir-0.3 pct W
    19 Ir-0.3 pct W alloys
    20 W alloys
    21 addition
    22 alloy
    23 basis
    24 boundaries
    25 concentration
    26 dislocation pileup model
    27 ductile
    28 ductility
    29 effect
    30 excess thorium
    31 fine-grain size range
    32 fractures
    33 function
    34 grain growth
    35 grain size
    36 grain-boundary separation
    37 growth
    38 heat treatment
    39 high temperature
    40 impact ductility
    41 impact properties
    42 intergranular fracture
    43 iridium
    44 limit
    45 mechanical properties
    46 model
    47 more ductile
    48 particles
    49 pct W
    50 pct W alloys
    51 pileup model
    52 ppm
    53 ppm thorium
    54 properties
    55 range
    56 range 0
    57 recrystallization temperature
    58 results
    59 second-phase particles
    60 segregation
    61 separation
    62 size
    63 size range
    64 solubility limit
    65 stress concentration
    66 temperature
    67 tensile tests
    68 test
    69 test temperature
    70 thorium
    71 thorium additions
    72 thorium concentrations
    73 thorium-doped alloys
    74 transgranular fracture
    75 treatment
    76 weight
    77 schema:name Effect of Thorium Additions on Metallurgical and Mechanical Properties of Ir-0.3 pct W Alloys
    78 schema:pagination 993-1002
    79 schema:productId N99bb547f43e34af6aaf6d532f3f8bd91
    80 Ncf94b6c1943745beb3e3c5c8c0c64c0e
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017433988
    82 https://doi.org/10.1007/bf02643480
    83 schema:sdDatePublished 2021-11-01T17:56
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher Na0e60cb11c304edeaf9e2caef2677ca1
    86 schema:url https://doi.org/10.1007/bf02643480
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N135fa6ec2e02456da429bee9155839ac schema:affiliation grid-institutes:grid.135519.a
    91 schema:familyName Schaffhauser
    92 schema:givenName A. C.
    93 rdf:type schema:Person
    94 N1ebf1e6f179849b384f7b3a7700cd101 rdf:first sg:person.016645616061.45
    95 rdf:rest N66bce0fdbbe149cd970bf5965e5e69fe
    96 N5248195b59334371996ebd9d70ac1d98 schema:volumeNumber 12
    97 rdf:type schema:PublicationVolume
    98 N66bce0fdbbe149cd970bf5965e5e69fe rdf:first N135fa6ec2e02456da429bee9155839ac
    99 rdf:rest rdf:nil
    100 N99bb547f43e34af6aaf6d532f3f8bd91 schema:name dimensions_id
    101 schema:value pub.1017433988
    102 rdf:type schema:PropertyValue
    103 Na0e60cb11c304edeaf9e2caef2677ca1 schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 Na61be80bc31a4880ab50acf4dd9e9262 schema:issueNumber 6
    106 rdf:type schema:PublicationIssue
    107 Na8c4d53b43c54a55aa81f84bef910c9c rdf:first sg:person.011275665477.02
    108 rdf:rest N1ebf1e6f179849b384f7b3a7700cd101
    109 Ncf94b6c1943745beb3e3c5c8c0c64c0e schema:name doi
    110 schema:value 10.1007/bf02643480
    111 rdf:type schema:PropertyValue
    112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Engineering
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Materials Engineering
    117 rdf:type schema:DefinedTerm
    118 sg:journal.1136292 schema:issn 1073-5623
    119 1543-1940
    120 schema:name Metallurgical and Materials Transactions A
    121 schema:publisher Springer Nature
    122 rdf:type schema:Periodical
    123 sg:person.011275665477.02 schema:affiliation grid-institutes:grid.135519.a
    124 schema:familyName Liu
    125 schema:givenName C. T.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275665477.02
    127 rdf:type schema:Person
    128 sg:person.016645616061.45 schema:affiliation grid-institutes:grid.135519.a
    129 schema:familyName Inouye
    130 schema:givenName H.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645616061.45
    132 rdf:type schema:Person
    133 sg:pub.10.1007/bf02646403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004117612
    134 https://doi.org/10.1007/bf02646403
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf02658389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006498661
    137 https://doi.org/10.1007/bf02658389
    138 rdf:type schema:CreativeWork
    139 grid-institutes:grid.135519.a schema:alternateName Oak Ridge National Laboratory, 37830, Oak Ridge, TN
    140 schema:name Oak Ridge National Laboratory, 37830, Oak Ridge, TN
    141 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...