Ontology type: schema:ScholarlyArticle
1970-08
AUTHORSS. M. Copley, A. F. Giamei, S. M. Johnson, M. F. Hornbecker
ABSTRACTThe origin of freckles during unidirectional solidification is studied in a transparent, low melting model system, 30 wt pct NH4C1-H2O. In 30NH4Cl-H2O, freckles are caused by upward flowing liquid jets in the mushy zone. The jets erode the mushy zone causing localized segregation and start new grains by producing dendritic debris. It is shown that the jets observed in 30NH4C1-H2O are free convection resulting from a density inversion in the mushy zone. A comparison of driving force, thermal transport effects and solute transport effects in 30NH4C1-H2O and metallic systems shows that jets are possible in metallic alloys where light elements segregate normally or heavy elements segregate inversely. It is concluded that freckles in unidirectionally solidified castings and vacuum consumable-electrode ingots are caused by convective jets. It is shown that the tendency to freckle is greatest in alloys with a large density inversion, high thermal diffusivity, low solute diffusivity, and low viscosity. For a given alloy, the driving force for freckling is proportional to the inverse square of the thermal gradient. Erosion by the jets is decreased by increasing the thermal gradient and growth rate. The location of freckles is influenced by mushy zone curvature. More... »
PAGES2193-2204
http://scigraph.springernature.com/pub.10.1007/bf02643435
DOIhttp://dx.doi.org/10.1007/bf02643435
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1027277476
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Advanced Materials Research and Development Laboratory, Pratt & Whitney Aircraft, Middletown, Conn",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Advanced Materials Research and Development Laboratory, Pratt & Whitney Aircraft, Middletown, Conn"
],
"type": "Organization"
},
"familyName": "Copley",
"givenName": "S. M.",
"id": "sg:person.016253333165.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016253333165.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Advanced Materials Research and Development Laboratory, Pratt & Whitney Aircraft, Middletown, Conn",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Advanced Materials Research and Development Laboratory, Pratt & Whitney Aircraft, Middletown, Conn"
],
"type": "Organization"
},
"familyName": "Giamei",
"givenName": "A. F.",
"id": "sg:person.016370647001.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016370647001.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Materials Science, Stanford University, Stanford, Calif",
"id": "http://www.grid.ac/institutes/grid.168010.e",
"name": [
"Department of Materials Science, Stanford University, Stanford, Calif"
],
"type": "Organization"
},
"familyName": "Johnson",
"givenName": "S. M.",
"id": "sg:person.010345642365.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010345642365.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Advanced Materials Research and Development Laboratory, Pratt & Whitney Aircraft, Middletown, Conn",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Advanced Materials Research and Development Laboratory, Pratt & Whitney Aircraft, Middletown, Conn"
],
"type": "Organization"
},
"familyName": "Hornbecker",
"givenName": "M. F.",
"id": "sg:person.011143222765.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143222765.50"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf03378758",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047058218",
"https://doi.org/10.1007/bf03378758"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02643434",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024967584",
"https://doi.org/10.1007/bf02643434"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/119735a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046004106",
"https://doi.org/10.1038/119735a0"
],
"type": "CreativeWork"
}
],
"datePublished": "1970-08",
"datePublishedReg": "1970-08-01",
"description": "The origin of freckles during unidirectional solidification is studied in a transparent, low melting model system, 30 wt pct NH4C1-H2O. In 30NH4Cl-H2O, freckles are caused by upward flowing liquid jets in the mushy zone. The jets erode the mushy zone causing localized segregation and start new grains by producing dendritic debris. It is shown that the jets observed in 30NH4C1-H2O are free convection resulting from a density inversion in the mushy zone. A comparison of driving force, thermal transport effects and solute transport effects in 30NH4C1-H2O and metallic systems shows that jets are possible in metallic alloys where light elements segregate normally or heavy elements segregate inversely. It is concluded that freckles in unidirectionally solidified castings and vacuum consumable-electrode ingots are caused by convective jets. It is shown that the tendency to freckle is greatest in alloys with a large density inversion, high thermal diffusivity, low solute diffusivity, and low viscosity. For a given alloy, the driving force for freckling is proportional to the inverse square of the thermal gradient. Erosion by the jets is decreased by increasing the thermal gradient and growth rate. The location of freckles is influenced by mushy zone curvature.",
"genre": "article",
"id": "sg:pub.10.1007/bf02643435",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136775",
"issn": [
"1073-5615",
"1543-1916"
],
"name": "Metallurgical and Materials Transactions B",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "8",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "1"
}
],
"keywords": [
"mushy zone",
"low solute diffusivity",
"thermal gradient",
"high thermal diffusivity",
"density inversion",
"thermal transport effects",
"transport effects",
"free convection",
"liquid jet",
"thermal diffusivity",
"metallic alloys",
"convective jet",
"unidirectional solidification",
"new grains",
"solute diffusivity",
"alloy",
"low viscosity",
"jet",
"casting",
"metallic systems",
"diffusivity",
"ingots",
"solidification",
"force",
"convection",
"zone",
"gradient",
"viscosity",
"inverse square",
"inversion",
"grains",
"light elements",
"system",
"elements",
"growth rate",
"debris",
"curvature",
"effect",
"erosion",
"segregation",
"location",
"freckles",
"comparison",
"squares",
"model system",
"heavy elements",
"rate",
"tendency",
"origin"
],
"name": "The origin of freckles in unidirectionally solidified castings",
"pagination": "2193-2204",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1027277476"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02643435"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02643435",
"https://app.dimensions.ai/details/publication/pub.1027277476"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:48",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_118.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf02643435"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02643435'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02643435'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02643435'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02643435'
This table displays all metadata directly associated to this object as RDF triples.
142 TRIPLES
21 PREDICATES
77 URIs
66 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf02643435 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | Na4bc45023d9345ee89949f64793fb7c7 |
4 | ″ | schema:citation | sg:pub.10.1007/bf02643434 |
5 | ″ | ″ | sg:pub.10.1007/bf03378758 |
6 | ″ | ″ | sg:pub.10.1038/119735a0 |
7 | ″ | schema:datePublished | 1970-08 |
8 | ″ | schema:datePublishedReg | 1970-08-01 |
9 | ″ | schema:description | The origin of freckles during unidirectional solidification is studied in a transparent, low melting model system, 30 wt pct NH4C1-H2O. In 30NH4Cl-H2O, freckles are caused by upward flowing liquid jets in the mushy zone. The jets erode the mushy zone causing localized segregation and start new grains by producing dendritic debris. It is shown that the jets observed in 30NH4C1-H2O are free convection resulting from a density inversion in the mushy zone. A comparison of driving force, thermal transport effects and solute transport effects in 30NH4C1-H2O and metallic systems shows that jets are possible in metallic alloys where light elements segregate normally or heavy elements segregate inversely. It is concluded that freckles in unidirectionally solidified castings and vacuum consumable-electrode ingots are caused by convective jets. It is shown that the tendency to freckle is greatest in alloys with a large density inversion, high thermal diffusivity, low solute diffusivity, and low viscosity. For a given alloy, the driving force for freckling is proportional to the inverse square of the thermal gradient. Erosion by the jets is decreased by increasing the thermal gradient and growth rate. The location of freckles is influenced by mushy zone curvature. |
10 | ″ | schema:genre | article |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N5e94b5934e65495aae01ccec8882a883 |
13 | ″ | ″ | N6e3ae0a6bc7a4390a9841e87ff9b84e3 |
14 | ″ | ″ | sg:journal.1136775 |
15 | ″ | schema:keywords | alloy |
16 | ″ | ″ | casting |
17 | ″ | ″ | comparison |
18 | ″ | ″ | convection |
19 | ″ | ″ | convective jet |
20 | ″ | ″ | curvature |
21 | ″ | ″ | debris |
22 | ″ | ″ | density inversion |
23 | ″ | ″ | diffusivity |
24 | ″ | ″ | effect |
25 | ″ | ″ | elements |
26 | ″ | ″ | erosion |
27 | ″ | ″ | force |
28 | ″ | ″ | freckles |
29 | ″ | ″ | free convection |
30 | ″ | ″ | gradient |
31 | ″ | ″ | grains |
32 | ″ | ″ | growth rate |
33 | ″ | ″ | heavy elements |
34 | ″ | ″ | high thermal diffusivity |
35 | ″ | ″ | ingots |
36 | ″ | ″ | inverse square |
37 | ″ | ″ | inversion |
38 | ″ | ″ | jet |
39 | ″ | ″ | light elements |
40 | ″ | ″ | liquid jet |
41 | ″ | ″ | location |
42 | ″ | ″ | low solute diffusivity |
43 | ″ | ″ | low viscosity |
44 | ″ | ″ | metallic alloys |
45 | ″ | ″ | metallic systems |
46 | ″ | ″ | model system |
47 | ″ | ″ | mushy zone |
48 | ″ | ″ | new grains |
49 | ″ | ″ | origin |
50 | ″ | ″ | rate |
51 | ″ | ″ | segregation |
52 | ″ | ″ | solidification |
53 | ″ | ″ | solute diffusivity |
54 | ″ | ″ | squares |
55 | ″ | ″ | system |
56 | ″ | ″ | tendency |
57 | ″ | ″ | thermal diffusivity |
58 | ″ | ″ | thermal gradient |
59 | ″ | ″ | thermal transport effects |
60 | ″ | ″ | transport effects |
61 | ″ | ″ | unidirectional solidification |
62 | ″ | ″ | viscosity |
63 | ″ | ″ | zone |
64 | ″ | schema:name | The origin of freckles in unidirectionally solidified castings |
65 | ″ | schema:pagination | 2193-2204 |
66 | ″ | schema:productId | N19ce379b83dd46578fd369b52714227d |
67 | ″ | ″ | N4a53bbb6160f497d908208a06089edb9 |
68 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027277476 |
69 | ″ | ″ | https://doi.org/10.1007/bf02643435 |
70 | ″ | schema:sdDatePublished | 2022-08-04T16:48 |
71 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
72 | ″ | schema:sdPublisher | N0344c0ed97b34378a1b5a9678bfb6a02 |
73 | ″ | schema:url | https://doi.org/10.1007/bf02643435 |
74 | ″ | sgo:license | sg:explorer/license/ |
75 | ″ | sgo:sdDataset | articles |
76 | ″ | rdf:type | schema:ScholarlyArticle |
77 | N0344c0ed97b34378a1b5a9678bfb6a02 | schema:name | Springer Nature - SN SciGraph project |
78 | ″ | rdf:type | schema:Organization |
79 | N19ce379b83dd46578fd369b52714227d | schema:name | dimensions_id |
80 | ″ | schema:value | pub.1027277476 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | N433a0b97b060498298b45bbcb0be442b | rdf:first | sg:person.010345642365.41 |
83 | ″ | rdf:rest | Ne6252d4889da44feae563a19e9c4dd7e |
84 | N4a53bbb6160f497d908208a06089edb9 | schema:name | doi |
85 | ″ | schema:value | 10.1007/bf02643435 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | N5e94b5934e65495aae01ccec8882a883 | schema:issueNumber | 8 |
88 | ″ | rdf:type | schema:PublicationIssue |
89 | N6e3ae0a6bc7a4390a9841e87ff9b84e3 | schema:volumeNumber | 1 |
90 | ″ | rdf:type | schema:PublicationVolume |
91 | Na4bc45023d9345ee89949f64793fb7c7 | rdf:first | sg:person.016253333165.31 |
92 | ″ | rdf:rest | Nd17115763da04919872be067679e944d |
93 | Nd17115763da04919872be067679e944d | rdf:first | sg:person.016370647001.98 |
94 | ″ | rdf:rest | N433a0b97b060498298b45bbcb0be442b |
95 | Ne6252d4889da44feae563a19e9c4dd7e | rdf:first | sg:person.011143222765.50 |
96 | ″ | rdf:rest | rdf:nil |
97 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Engineering |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Materials Engineering |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | sg:journal.1136775 | schema:issn | 1073-5615 |
104 | ″ | ″ | 1543-1916 |
105 | ″ | schema:name | Metallurgical and Materials Transactions B |
106 | ″ | schema:publisher | Springer Nature |
107 | ″ | rdf:type | schema:Periodical |
108 | sg:person.010345642365.41 | schema:affiliation | grid-institutes:grid.168010.e |
109 | ″ | schema:familyName | Johnson |
110 | ″ | schema:givenName | S. M. |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010345642365.41 |
112 | ″ | rdf:type | schema:Person |
113 | sg:person.011143222765.50 | schema:affiliation | grid-institutes:None |
114 | ″ | schema:familyName | Hornbecker |
115 | ″ | schema:givenName | M. F. |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143222765.50 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.016253333165.31 | schema:affiliation | grid-institutes:None |
119 | ″ | schema:familyName | Copley |
120 | ″ | schema:givenName | S. M. |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016253333165.31 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.016370647001.98 | schema:affiliation | grid-institutes:None |
124 | ″ | schema:familyName | Giamei |
125 | ″ | schema:givenName | A. F. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016370647001.98 |
127 | ″ | rdf:type | schema:Person |
128 | sg:pub.10.1007/bf02643434 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1024967584 |
129 | ″ | ″ | https://doi.org/10.1007/bf02643434 |
130 | ″ | rdf:type | schema:CreativeWork |
131 | sg:pub.10.1007/bf03378758 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047058218 |
132 | ″ | ″ | https://doi.org/10.1007/bf03378758 |
133 | ″ | rdf:type | schema:CreativeWork |
134 | sg:pub.10.1038/119735a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046004106 |
135 | ″ | ″ | https://doi.org/10.1038/119735a0 |
136 | ″ | rdf:type | schema:CreativeWork |
137 | grid-institutes:None | schema:alternateName | Advanced Materials Research and Development Laboratory, Pratt & Whitney Aircraft, Middletown, Conn |
138 | ″ | schema:name | Advanced Materials Research and Development Laboratory, Pratt & Whitney Aircraft, Middletown, Conn |
139 | ″ | rdf:type | schema:Organization |
140 | grid-institutes:grid.168010.e | schema:alternateName | Department of Materials Science, Stanford University, Stanford, Calif |
141 | ″ | schema:name | Department of Materials Science, Stanford University, Stanford, Calif |
142 | ″ | rdf:type | schema:Organization |