Chaotic vibrations of spherical and conical axially symmetric shells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-03

AUTHORS

V. A. Krysko, J. Awrejcewicz, T. V. Shchekaturova

ABSTRACT

Chaotic vibrations of deterministic, geometrically nonlinear, elastic, spherical and conical axially summetric shells, subject to sign-changing transversal load using the variational principle, are analysed. The paper is motivated by an observation that variational equations of the hybrid type are suitableto solve many dynamical problems of the shells theory. It is assumed that the shell material is isotropic, and the Hook's principle holds. Intertial forces in directions tangent to mean shell surface and rotation inertia of a normal shell cross section are neglected. A transition form PDEs to ODEs (the Cauchy problem) is realized through the Ritz procedure. Next, the Cauchy problem is solved using the fourth-order Runge-Kutta method. Qualitative and quantitative analysis is carried out in the frame of both nonlinear dynamics and quantitative theory of differential equations. New scenarios from harmonic to chaotic dynamics are detected. Various vibration forms development versus control parameters (rise of arc; amplitude and frequency of the exciting force and number of vibrational modes accounted) are illustrated and discussed. More... »

PAGES

338-358

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02637035

DOI

http://dx.doi.org/10.1007/bf02637035

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029323853


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Saratov State University, 410054, B. Sadovaya, 96a, fl. 77, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Department of Mathematics, Saratov State University, 410054, B. Sadovaya, 96a, fl. 77, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "V. A.", 
        "id": "sg:person.015167266033.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Automatics and Biomechanics, Technical University of Lodz, 1/15 Stefanowskiego St., 90-924, Lodz, Poland", 
          "id": "http://www.grid.ac/institutes/grid.412284.9", 
          "name": [
            "Department of Automatics and Biomechanics, Technical University of Lodz, 1/15 Stefanowskiego St., 90-924, Lodz, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Awrejcewicz", 
        "givenName": "J.", 
        "id": "sg:person.012103132446.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Saratov State University, 410054, B. Sadovaya, 96a, fl. 77, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Department of Mathematics, Saratov State University, 410054, B. Sadovaya, 96a, fl. 77, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shchekaturova", 
        "givenName": "T. V.", 
        "id": "sg:person.011647256643.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011647256643.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01107909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048384192", 
          "https://doi.org/10.1007/bf01107909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024458814785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020728380", 
          "https://doi.org/10.1023/a:1024458814785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011133223520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002170452", 
          "https://doi.org/10.1023/a:1011133223520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02748874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004074480", 
          "https://doi.org/10.1007/bf02748874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00419-003-0303-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000050335", 
          "https://doi.org/10.1007/s00419-003-0303-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-03", 
    "datePublishedReg": "2005-03-01", 
    "description": "Chaotic vibrations of deterministic, geometrically nonlinear, elastic, spherical and conical axially summetric shells, subject to sign-changing transversal load using the variational principle, are analysed. The paper is motivated by an observation that variational equations of the hybrid type are suitableto solve many dynamical problems of the shells theory. It is assumed that the shell material is isotropic, and the Hook's principle holds. Intertial forces in directions tangent to mean shell surface and rotation inertia of a normal shell cross section are neglected. A transition form PDEs to ODEs (the Cauchy problem) is realized through the Ritz procedure. Next, the Cauchy problem is solved using the fourth-order Runge-Kutta method. Qualitative and quantitative analysis is carried out in the frame of both nonlinear dynamics and quantitative theory of differential equations. New scenarios from harmonic to chaotic dynamics are detected. Various vibration forms development versus control parameters (rise of arc; amplitude and frequency of the exciting force and number of vibrational modes accounted) are illustrated and discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02637035", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042867", 
        "issn": [
          "0939-1533", 
          "1432-0681"
        ], 
        "name": "Archive of Applied Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "keywords": [
      "chaotic vibrations", 
      "Runge-Kutta method", 
      "fourth-order Runge\u2013Kutta method", 
      "differential equations", 
      "Cauchy problem", 
      "variational equations", 
      "dynamical problems", 
      "chaotic dynamics", 
      "nonlinear dynamics", 
      "variational principle", 
      "rotation inertia", 
      "control parameters", 
      "Ritz procedure", 
      "symmetric shell", 
      "direction tangent", 
      "equations", 
      "transversal load", 
      "shell theory", 
      "quantitative theory", 
      "problem", 
      "theory", 
      "ODEs", 
      "dynamics", 
      "deterministic", 
      "principles", 
      "vibration", 
      "shell cross sections", 
      "tangent", 
      "parameters", 
      "inertia", 
      "hybrid type", 
      "new scenario", 
      "transition form", 
      "scenarios", 
      "procedure", 
      "form", 
      "shell surface", 
      "load", 
      "quantitative analysis", 
      "analysis", 
      "frame", 
      "force", 
      "cross sections", 
      "shell", 
      "types", 
      "observations", 
      "sections", 
      "development", 
      "surface", 
      "shell material", 
      "materials", 
      "paper", 
      "method", 
      "summetric shells", 
      "sign-changing transversal load", 
      "Hook's principle", 
      "Intertial forces", 
      "normal shell cross section", 
      "conical axially symmetric shells", 
      "axially symmetric shells"
    ], 
    "name": "Chaotic vibrations of spherical and conical axially symmetric shells", 
    "pagination": "338-358", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029323853"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02637035"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02637035", 
      "https://app.dimensions.ai/details/publication/pub.1029323853"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_398.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02637035"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02637035'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02637035'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02637035'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02637035'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      22 PREDICATES      92 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02637035 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:0102
4 schema:author N55b265fdfe2b4e469c09ac2dade618f1
5 schema:citation sg:pub.10.1007/bf01107909
6 sg:pub.10.1007/bf02748874
7 sg:pub.10.1007/s00419-003-0303-8
8 sg:pub.10.1023/a:1011133223520
9 sg:pub.10.1023/a:1024458814785
10 schema:datePublished 2005-03
11 schema:datePublishedReg 2005-03-01
12 schema:description Chaotic vibrations of deterministic, geometrically nonlinear, elastic, spherical and conical axially summetric shells, subject to sign-changing transversal load using the variational principle, are analysed. The paper is motivated by an observation that variational equations of the hybrid type are suitableto solve many dynamical problems of the shells theory. It is assumed that the shell material is isotropic, and the Hook's principle holds. Intertial forces in directions tangent to mean shell surface and rotation inertia of a normal shell cross section are neglected. A transition form PDEs to ODEs (the Cauchy problem) is realized through the Ritz procedure. Next, the Cauchy problem is solved using the fourth-order Runge-Kutta method. Qualitative and quantitative analysis is carried out in the frame of both nonlinear dynamics and quantitative theory of differential equations. New scenarios from harmonic to chaotic dynamics are detected. Various vibration forms development versus control parameters (rise of arc; amplitude and frequency of the exciting force and number of vibrational modes accounted) are illustrated and discussed.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N31bb579cf2314d0bb7d3c608c4e30e35
17 N6e8ee5cfe63d44fab0e6a3688a8e2423
18 sg:journal.1042867
19 schema:keywords Cauchy problem
20 Hook's principle
21 Intertial forces
22 ODEs
23 Ritz procedure
24 Runge-Kutta method
25 analysis
26 axially symmetric shells
27 chaotic dynamics
28 chaotic vibrations
29 conical axially symmetric shells
30 control parameters
31 cross sections
32 deterministic
33 development
34 differential equations
35 direction tangent
36 dynamical problems
37 dynamics
38 equations
39 force
40 form
41 fourth-order Runge–Kutta method
42 frame
43 hybrid type
44 inertia
45 load
46 materials
47 method
48 new scenario
49 nonlinear dynamics
50 normal shell cross section
51 observations
52 paper
53 parameters
54 principles
55 problem
56 procedure
57 quantitative analysis
58 quantitative theory
59 rotation inertia
60 scenarios
61 sections
62 shell
63 shell cross sections
64 shell material
65 shell surface
66 shell theory
67 sign-changing transversal load
68 summetric shells
69 surface
70 symmetric shell
71 tangent
72 theory
73 transition form
74 transversal load
75 types
76 variational equations
77 variational principle
78 vibration
79 schema:name Chaotic vibrations of spherical and conical axially symmetric shells
80 schema:pagination 338-358
81 schema:productId N3cb4defb0f014374aa8537b302691e7e
82 N5261f99c4ed749f78799f1c6c4ffac31
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029323853
84 https://doi.org/10.1007/bf02637035
85 schema:sdDatePublished 2021-11-01T18:07
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N50abac54bf474ede93932d762bb59eda
88 schema:url https://doi.org/10.1007/bf02637035
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N0af35c61ffbc4864a939814d55af7fde rdf:first sg:person.012103132446.89
93 rdf:rest N100d7d8541804444b24faede60cd9581
94 N100d7d8541804444b24faede60cd9581 rdf:first sg:person.011647256643.73
95 rdf:rest rdf:nil
96 N31bb579cf2314d0bb7d3c608c4e30e35 schema:volumeNumber 74
97 rdf:type schema:PublicationVolume
98 N3cb4defb0f014374aa8537b302691e7e schema:name dimensions_id
99 schema:value pub.1029323853
100 rdf:type schema:PropertyValue
101 N50abac54bf474ede93932d762bb59eda schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N5261f99c4ed749f78799f1c6c4ffac31 schema:name doi
104 schema:value 10.1007/bf02637035
105 rdf:type schema:PropertyValue
106 N55b265fdfe2b4e469c09ac2dade618f1 rdf:first sg:person.015167266033.92
107 rdf:rest N0af35c61ffbc4864a939814d55af7fde
108 N6e8ee5cfe63d44fab0e6a3688a8e2423 schema:issueNumber 5-6
109 rdf:type schema:PublicationIssue
110 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
111 schema:name Mathematical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
114 schema:name Pure Mathematics
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
117 schema:name Applied Mathematics
118 rdf:type schema:DefinedTerm
119 sg:journal.1042867 schema:issn 0939-1533
120 1432-0681
121 schema:name Archive of Applied Mechanics
122 rdf:type schema:Periodical
123 sg:person.011647256643.73 schema:affiliation grid-institutes:grid.446088.6
124 schema:familyName Shchekaturova
125 schema:givenName T. V.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011647256643.73
127 rdf:type schema:Person
128 sg:person.012103132446.89 schema:affiliation grid-institutes:grid.412284.9
129 schema:familyName Awrejcewicz
130 schema:givenName J.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89
132 rdf:type schema:Person
133 sg:person.015167266033.92 schema:affiliation grid-institutes:grid.446088.6
134 schema:familyName Krysko
135 schema:givenName V. A.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92
137 rdf:type schema:Person
138 sg:pub.10.1007/bf01107909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048384192
139 https://doi.org/10.1007/bf01107909
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/bf02748874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004074480
142 https://doi.org/10.1007/bf02748874
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00419-003-0303-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000050335
145 https://doi.org/10.1007/s00419-003-0303-8
146 rdf:type schema:CreativeWork
147 sg:pub.10.1023/a:1011133223520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170452
148 https://doi.org/10.1023/a:1011133223520
149 rdf:type schema:CreativeWork
150 sg:pub.10.1023/a:1024458814785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020728380
151 https://doi.org/10.1023/a:1024458814785
152 rdf:type schema:CreativeWork
153 grid-institutes:grid.412284.9 schema:alternateName Department of Automatics and Biomechanics, Technical University of Lodz, 1/15 Stefanowskiego St., 90-924, Lodz, Poland
154 schema:name Department of Automatics and Biomechanics, Technical University of Lodz, 1/15 Stefanowskiego St., 90-924, Lodz, Poland
155 rdf:type schema:Organization
156 grid-institutes:grid.446088.6 schema:alternateName Department of Mathematics, Saratov State University, 410054, B. Sadovaya, 96a, fl. 77, Saratov, Russia
157 schema:name Department of Mathematics, Saratov State University, 410054, B. Sadovaya, 96a, fl. 77, Saratov, Russia
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...