Partition structures of the cayley tree and applications for describing periodic gibbs distributions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-07

AUTHORS

U. A. Rozikov

ABSTRACT

In the group representation of the Cayley tree, the distribution of elements of the partition into conjugate classes of finite-index, normal subgroups is described. For the inhomogeneous Ising model, it is proved that there exist only three H0-periodic Gibbs distributions, where H0 is a normal subgroup of finite index.

PAGES

929-933

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02634109

DOI

http://dx.doi.org/10.1007/bf02634109

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000760297


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan Republic", 
          "id": "http://www.grid.ac/institutes/grid.419209.7", 
          "name": [
            "Institute for Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rozikov", 
        "givenName": "U. A.", 
        "id": "sg:person.014213263324.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213263324.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02634202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042152983", 
          "https://doi.org/10.1007/bf02634202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02108787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006639953", 
          "https://doi.org/10.1007/bf02108787"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-07", 
    "datePublishedReg": "1997-07-01", 
    "description": "In the group representation of the Cayley tree, the distribution of elements of the partition into conjugate classes of finite-index, normal subgroups is described. For the inhomogeneous Ising model, it is proved that there exist only three H0-periodic Gibbs distributions, where H0 is a normal subgroup of finite index.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02634109", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "2305-3135"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "keywords": [
      "Gibbs distribution", 
      "Cayley tree", 
      "normal subgroup", 
      "group representations", 
      "conjugate classes", 
      "inhomogeneous Ising models", 
      "Ising model", 
      "finite index", 
      "partition structure", 
      "representation", 
      "class", 
      "distribution", 
      "partition", 
      "model", 
      "H0", 
      "applications", 
      "trees", 
      "elements", 
      "distribution of elements", 
      "structure", 
      "subgroups", 
      "index", 
      "H0-periodic Gibbs distributions", 
      "periodic gibbs distributions"
    ], 
    "name": "Partition structures of the cayley tree and applications for describing periodic gibbs distributions", 
    "pagination": "929-933", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000760297"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02634109"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02634109", 
      "https://app.dimensions.ai/details/publication/pub.1000760297"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_283.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02634109"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02634109'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02634109'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02634109'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02634109'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      22 PREDICATES      52 URIs      42 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02634109 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0c9df5efc8d04e998cdf8797de48908f
4 schema:citation sg:pub.10.1007/bf02108787
5 sg:pub.10.1007/bf02634202
6 schema:datePublished 1997-07
7 schema:datePublishedReg 1997-07-01
8 schema:description In the group representation of the Cayley tree, the distribution of elements of the partition into conjugate classes of finite-index, normal subgroups is described. For the inhomogeneous Ising model, it is proved that there exist only three H0-periodic Gibbs distributions, where H0 is a normal subgroup of finite index.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N4dcde55e1910443b87f80ca5885689dd
13 Ne78db7de5c2d4a9896638c90e6842bea
14 sg:journal.1327888
15 schema:keywords Cayley tree
16 Gibbs distribution
17 H0
18 H0-periodic Gibbs distributions
19 Ising model
20 applications
21 class
22 conjugate classes
23 distribution
24 distribution of elements
25 elements
26 finite index
27 group representations
28 index
29 inhomogeneous Ising models
30 model
31 normal subgroup
32 partition
33 partition structure
34 periodic gibbs distributions
35 representation
36 structure
37 subgroups
38 trees
39 schema:name Partition structures of the cayley tree and applications for describing periodic gibbs distributions
40 schema:pagination 929-933
41 schema:productId N2e9c27af32f14661be14e40685d77a8f
42 Na54583ce8566466fae7b564b06ad1daf
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000760297
44 https://doi.org/10.1007/bf02634109
45 schema:sdDatePublished 2022-01-01T18:08
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nf16ca26c06d24e3abae3da9f6772b454
48 schema:url https://doi.org/10.1007/bf02634109
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0c9df5efc8d04e998cdf8797de48908f rdf:first sg:person.014213263324.92
53 rdf:rest rdf:nil
54 N2e9c27af32f14661be14e40685d77a8f schema:name doi
55 schema:value 10.1007/bf02634109
56 rdf:type schema:PropertyValue
57 N4dcde55e1910443b87f80ca5885689dd schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 Na54583ce8566466fae7b564b06ad1daf schema:name dimensions_id
60 schema:value pub.1000760297
61 rdf:type schema:PropertyValue
62 Ne78db7de5c2d4a9896638c90e6842bea schema:volumeNumber 112
63 rdf:type schema:PublicationVolume
64 Nf16ca26c06d24e3abae3da9f6772b454 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1327888 schema:issn 0040-5779
73 2305-3135
74 schema:name Theoretical and Mathematical Physics
75 schema:publisher Springer Nature
76 rdf:type schema:Periodical
77 sg:person.014213263324.92 schema:affiliation grid-institutes:grid.419209.7
78 schema:familyName Rozikov
79 schema:givenName U. A.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213263324.92
81 rdf:type schema:Person
82 sg:pub.10.1007/bf02108787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006639953
83 https://doi.org/10.1007/bf02108787
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf02634202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042152983
86 https://doi.org/10.1007/bf02634202
87 rdf:type schema:CreativeWork
88 grid-institutes:grid.419209.7 schema:alternateName Institute for Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan Republic
89 schema:name Institute for Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan Republic
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...