An investigation of three-matrix permutation tests View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-12

AUTHORS

Neal L. Oden, Robert R. Sokal

ABSTRACT

Several methods have recently been introduced for investigating relations between three interpoint proximity matricesA, B, C, each of which furnishes a different type of distance between the same objects. Smouse, Long, and Sokal (1986) investigate the partial correlation betweenA andB conditional onC. Dow and Cheverud (1985) ask whethercorr (A, C), equalscorr (B, C). Manly (1986) investigates regression-like models for predicting one matrix as a function of others.We have investigated rejection rates of these methods when their null hypotheses are true, but data are spatially autocorrelated (SA). That is,A, andB are distance matrices from independent realizations of the same SA generating process, andC is a matrix of geographic connections.SA causes all the models to be liberal because the hypothesis of equally likely row/column permutations invoked, by all these methods, is untrue when data are SA. Consequently, we cannot unreservedly recommend the use of any of these methods with SA data. However, if SA is weak, the Smouse-Long-Sokal method, used with a conservative critical value, is unlikely to reject falsely. More... »

PAGES

275-290

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02621410

DOI

http://dx.doi.org/10.1007/bf02621410

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033371215


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Preventive Medicine, Division of Epidemiology, Health Sciences Center, State Univeresity of New York, 11794-8036, Stony Brook, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Preventive Medicine, Division of Epidemiology, Health Sciences Center, State Univeresity of New York, 11794-8036, Stony Brook, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oden", 
        "givenName": "Neal L.", 
        "id": "sg:person.01025142664.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025142664.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Ecology and Evolution, State University of New York, 11794-5245, Stony Brook, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Ecology and Evolution, State University of New York, 11794-5245, Stony Brook, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sokal", 
        "givenName": "Robert R.", 
        "id": "sg:person.01305517101.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305517101.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02296263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041425274", 
          "https://doi.org/10.1007/bf02296263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/351143a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006373940", 
          "https://doi.org/10.1038/351143a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-12", 
    "datePublishedReg": "1992-12-01", 
    "description": "Several methods have recently been introduced for investigating relations between three interpoint proximity matricesA, B, C, each of which furnishes a different type of distance between the same objects. Smouse, Long, and Sokal (1986) investigate the partial correlation betweenA andB conditional onC. Dow and Cheverud (1985) ask whethercorr (A, C), equalscorr (B, C). Manly (1986) investigates regression-like models for predicting one matrix as a function of others.We have investigated rejection rates of these methods when their null hypotheses are true, but data are spatially autocorrelated (SA). That is,A, andB are distance matrices from independent realizations of the same SA generating process, andC is a matrix of geographic connections.SA causes all the models to be liberal because the hypothesis of equally likely row/column permutations invoked, by all these methods, is untrue when data are SA. Consequently, we cannot unreservedly recommend the use of any of these methods with SA data. However, if SA is weak, the Smouse-Long-Sokal method, used with a conservative critical value, is unlikely to reject falsely.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02621410", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1126672", 
        "issn": [
          "0176-4268", 
          "1432-1343"
        ], 
        "name": "Journal of Classification", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "regression-like models", 
      "independent realizations", 
      "conservative critical values", 
      "generating process", 
      "row/column permutations", 
      "permutation test", 
      "distance matrix", 
      "null hypothesis", 
      "column permutations", 
      "matrix", 
      "matricesA", 
      "geographic connections", 
      "critical value", 
      "model", 
      "Smouse", 
      "permutations", 
      "realization", 
      "andC", 
      "SA", 
      "same object", 
      "connection", 
      "function", 
      "different types", 
      "Sokal", 
      "objects", 
      "SA data", 
      "data", 
      "distance", 
      "process", 
      "relation", 
      "values", 
      "types", 
      "rejection rate", 
      "use", 
      "Dow", 
      "hypothesis", 
      "test", 
      "Long", 
      "rate", 
      "investigation", 
      "method", 
      "onC.", 
      "Cheverud", 
      "interpoint proximity matricesA", 
      "proximity matricesA", 
      "partial correlation betweenA andB conditional onC.", 
      "correlation betweenA andB conditional onC.", 
      "betweenA andB conditional onC.", 
      "andB conditional onC.", 
      "conditional onC.", 
      "whethercorr", 
      "equalscorr", 
      "same SA generating process", 
      "SA generating process", 
      "likely row/column permutations", 
      "Smouse-Long", 
      "Sokal method", 
      "three-matrix permutation tests"
    ], 
    "name": "An investigation of three-matrix permutation tests", 
    "pagination": "275-290", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033371215"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02621410"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02621410", 
      "https://app.dimensions.ai/details/publication/pub.1033371215"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_256.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02621410"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02621410'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02621410'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02621410'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02621410'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      22 PREDICATES      86 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02621410 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N971c1874745343b7bbf5af94f839c3c0
4 schema:citation sg:pub.10.1007/bf02296263
5 sg:pub.10.1038/351143a0
6 schema:datePublished 1992-12
7 schema:datePublishedReg 1992-12-01
8 schema:description Several methods have recently been introduced for investigating relations between three interpoint proximity matricesA, B, C, each of which furnishes a different type of distance between the same objects. Smouse, Long, and Sokal (1986) investigate the partial correlation betweenA andB conditional onC. Dow and Cheverud (1985) ask whethercorr (A, C), equalscorr (B, C). Manly (1986) investigates regression-like models for predicting one matrix as a function of others.We have investigated rejection rates of these methods when their null hypotheses are true, but data are spatially autocorrelated (SA). That is,A, andB are distance matrices from independent realizations of the same SA generating process, andC is a matrix of geographic connections.SA causes all the models to be liberal because the hypothesis of equally likely row/column permutations invoked, by all these methods, is untrue when data are SA. Consequently, we cannot unreservedly recommend the use of any of these methods with SA data. However, if SA is weak, the Smouse-Long-Sokal method, used with a conservative critical value, is unlikely to reject falsely.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N4e1d62bdd9474b24aaa6e8b815e00392
13 Nd3523c2eaee6498c8fb33d0f4a4680e8
14 sg:journal.1126672
15 schema:keywords Cheverud
16 Dow
17 Long
18 SA
19 SA data
20 SA generating process
21 Smouse
22 Smouse-Long
23 Sokal
24 Sokal method
25 andB conditional onC.
26 andC
27 betweenA andB conditional onC.
28 column permutations
29 conditional onC.
30 connection
31 conservative critical values
32 correlation betweenA andB conditional onC.
33 critical value
34 data
35 different types
36 distance
37 distance matrix
38 equalscorr
39 function
40 generating process
41 geographic connections
42 hypothesis
43 independent realizations
44 interpoint proximity matricesA
45 investigation
46 likely row/column permutations
47 matricesA
48 matrix
49 method
50 model
51 null hypothesis
52 objects
53 onC.
54 partial correlation betweenA andB conditional onC.
55 permutation test
56 permutations
57 process
58 proximity matricesA
59 rate
60 realization
61 regression-like models
62 rejection rate
63 relation
64 row/column permutations
65 same SA generating process
66 same object
67 test
68 three-matrix permutation tests
69 types
70 use
71 values
72 whethercorr
73 schema:name An investigation of three-matrix permutation tests
74 schema:pagination 275-290
75 schema:productId N3fa174e533024e23958df32489eca559
76 N6dd063b3ce0f45f7803415689dc834bc
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033371215
78 https://doi.org/10.1007/bf02621410
79 schema:sdDatePublished 2021-12-01T19:08
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Na17fbdb1eaf34771a2bd0d9ec453ac88
82 schema:url https://doi.org/10.1007/bf02621410
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N3fa174e533024e23958df32489eca559 schema:name doi
87 schema:value 10.1007/bf02621410
88 rdf:type schema:PropertyValue
89 N4e1d62bdd9474b24aaa6e8b815e00392 schema:volumeNumber 9
90 rdf:type schema:PublicationVolume
91 N6dd063b3ce0f45f7803415689dc834bc schema:name dimensions_id
92 schema:value pub.1033371215
93 rdf:type schema:PropertyValue
94 N971c1874745343b7bbf5af94f839c3c0 rdf:first sg:person.01025142664.99
95 rdf:rest Nb410fe5ec1bc4034b0501bdfa0981abc
96 Na17fbdb1eaf34771a2bd0d9ec453ac88 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nb410fe5ec1bc4034b0501bdfa0981abc rdf:first sg:person.01305517101.00
99 rdf:rest rdf:nil
100 Nd3523c2eaee6498c8fb33d0f4a4680e8 schema:issueNumber 2
101 rdf:type schema:PublicationIssue
102 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
103 schema:name Mathematical Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
106 schema:name Statistics
107 rdf:type schema:DefinedTerm
108 sg:journal.1126672 schema:issn 0176-4268
109 1432-1343
110 schema:name Journal of Classification
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.01025142664.99 schema:affiliation grid-institutes:grid.36425.36
114 schema:familyName Oden
115 schema:givenName Neal L.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025142664.99
117 rdf:type schema:Person
118 sg:person.01305517101.00 schema:affiliation grid-institutes:grid.36425.36
119 schema:familyName Sokal
120 schema:givenName Robert R.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305517101.00
122 rdf:type schema:Person
123 sg:pub.10.1007/bf02296263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041425274
124 https://doi.org/10.1007/bf02296263
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/351143a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006373940
127 https://doi.org/10.1038/351143a0
128 rdf:type schema:CreativeWork
129 grid-institutes:grid.36425.36 schema:alternateName Department of Ecology and Evolution, State University of New York, 11794-5245, Stony Brook, New York, USA
130 Department of Preventive Medicine, Division of Epidemiology, Health Sciences Center, State Univeresity of New York, 11794-8036, Stony Brook, New York, USA
131 schema:name Department of Ecology and Evolution, State University of New York, 11794-5245, Stony Brook, New York, USA
132 Department of Preventive Medicine, Division of Epidemiology, Health Sciences Center, State Univeresity of New York, 11794-8036, Stony Brook, New York, USA
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...