An investigation of three-matrix permutation tests View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-12

AUTHORS

Neal L. Oden, Robert R. Sokal

ABSTRACT

Several methods have recently been introduced for investigating relations between three interpoint proximity matricesA, B, C, each of which furnishes a different type of distance between the same objects. Smouse, Long, and Sokal (1986) investigate the partial correlation betweenA andB conditional onC. Dow and Cheverud (1985) ask whethercorr (A, C), equalscorr (B, C). Manly (1986) investigates regression-like models for predicting one matrix as a function of others. We have investigated rejection rates of these methods when their null hypotheses are true, but data are spatially autocorrelated (SA). That is,A, andB are distance matrices from independent realizations of the same SA generating process, andC is a matrix of geographic connections. SA causes all the models to be liberal because the hypothesis of equally likely row/column permutations invoked, by all these methods, is untrue when data are SA. Consequently, we cannot unreservedly recommend the use of any of these methods with SA data. However, if SA is weak, the Smouse-Long-Sokal method, used with a conservative critical value, is unlikely to reject falsely. More... »

PAGES

275-290

Journal

TITLE

Journal of Classification

ISSUE

2

VOLUME

9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02621410

DOI

http://dx.doi.org/10.1007/bf02621410

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033371215


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stony Brook University", 
          "id": "https://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Preventive Medicine, Division of Epidemiology, Health Sciences Center, State Univeresity of New York, 11794-8036, Stony Brook, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oden", 
        "givenName": "Neal L.", 
        "id": "sg:person.01025142664.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025142664.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stony Brook University", 
          "id": "https://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Ecology and Evolution, State University of New York, 11794-5245, Stony Brook, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sokal", 
        "givenName": "Robert R.", 
        "id": "sg:person.01305517101.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305517101.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-2496(81)90060-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000352525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.5.1722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000666010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.87.7.2715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003463204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1095-8312.1978.tb00014.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004109977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/351143a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006373940", 
          "https://doi.org/10.1038/351143a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02296263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041425274", 
          "https://doi.org/10.1007/bf02296263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02296263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041425274", 
          "https://doi.org/10.1007/bf02296263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330680307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042255273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330680307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042255273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1095-8312.1978.tb00013.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045263449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330720307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047084082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330720307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047084082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02515450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050504681", 
          "https://doi.org/10.1007/bf02515450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/285228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058595351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2413122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069921440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079942514", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081518966", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-12", 
    "datePublishedReg": "1992-12-01", 
    "description": "Several methods have recently been introduced for investigating relations between three interpoint proximity matricesA, B, C, each of which furnishes a different type of distance between the same objects. Smouse, Long, and Sokal (1986) investigate the partial correlation betweenA andB conditional onC. Dow and Cheverud (1985) ask whethercorr (A, C), equalscorr (B, C). Manly (1986) investigates regression-like models for predicting one matrix as a function of others. We have investigated rejection rates of these methods when their null hypotheses are true, but data are spatially autocorrelated (SA). That is,A, andB are distance matrices from independent realizations of the same SA generating process, andC is a matrix of geographic connections. SA causes all the models to be liberal because the hypothesis of equally likely row/column permutations invoked, by all these methods, is untrue when data are SA. Consequently, we cannot unreservedly recommend the use of any of these methods with SA data. However, if SA is weak, the Smouse-Long-Sokal method, used with a conservative critical value, is unlikely to reject falsely.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02621410", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1126672", 
        "issn": [
          "0176-4268", 
          "1432-1343"
        ], 
        "name": "Journal of Classification", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "An investigation of three-matrix permutation tests", 
    "pagination": "275-290", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ef94a64ecaa3da889e85fefb21d8f05db41351c140107002420663ff5551fb1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02621410"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033371215"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02621410", 
      "https://app.dimensions.ai/details/publication/pub.1033371215"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02621410"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02621410'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02621410'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02621410'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02621410'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02621410 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ne035dd2740fd46beaacee6985b512ee8
4 schema:citation sg:pub.10.1007/bf02296263
5 sg:pub.10.1007/bf02515450
6 sg:pub.10.1038/351143a0
7 https://app.dimensions.ai/details/publication/pub.1079942514
8 https://app.dimensions.ai/details/publication/pub.1081518966
9 https://doi.org/10.1002/ajpa.1330680307
10 https://doi.org/10.1002/ajpa.1330720307
11 https://doi.org/10.1016/0022-2496(81)90060-2
12 https://doi.org/10.1073/pnas.85.5.1722
13 https://doi.org/10.1073/pnas.87.7.2715
14 https://doi.org/10.1086/285228
15 https://doi.org/10.1111/j.1095-8312.1978.tb00013.x
16 https://doi.org/10.1111/j.1095-8312.1978.tb00014.x
17 https://doi.org/10.2307/2413122
18 schema:datePublished 1992-12
19 schema:datePublishedReg 1992-12-01
20 schema:description Several methods have recently been introduced for investigating relations between three interpoint proximity matricesA, B, C, each of which furnishes a different type of distance between the same objects. Smouse, Long, and Sokal (1986) investigate the partial correlation betweenA andB conditional onC. Dow and Cheverud (1985) ask whethercorr (A, C), equalscorr (B, C). Manly (1986) investigates regression-like models for predicting one matrix as a function of others. We have investigated rejection rates of these methods when their null hypotheses are true, but data are spatially autocorrelated (SA). That is,A, andB are distance matrices from independent realizations of the same SA generating process, andC is a matrix of geographic connections. SA causes all the models to be liberal because the hypothesis of equally likely row/column permutations invoked, by all these methods, is untrue when data are SA. Consequently, we cannot unreservedly recommend the use of any of these methods with SA data. However, if SA is weak, the Smouse-Long-Sokal method, used with a conservative critical value, is unlikely to reject falsely.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N22cf960f6d3147bfbfc77ccb752e2076
25 Nb73266b9aadb4fd39bdb4be7bbafd4a5
26 sg:journal.1126672
27 schema:name An investigation of three-matrix permutation tests
28 schema:pagination 275-290
29 schema:productId N01eaf9bbcd694d2e986016b9c43979f6
30 N3bcda18232c547e380e218f879cbff9b
31 Nb7f598244f0744f79c469b086695b73f
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033371215
33 https://doi.org/10.1007/bf02621410
34 schema:sdDatePublished 2019-04-11T13:32
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N4e0fbed2c77c428396275e6a251bd47a
37 schema:url http://link.springer.com/10.1007/BF02621410
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N01eaf9bbcd694d2e986016b9c43979f6 schema:name doi
42 schema:value 10.1007/bf02621410
43 rdf:type schema:PropertyValue
44 N22cf960f6d3147bfbfc77ccb752e2076 schema:volumeNumber 9
45 rdf:type schema:PublicationVolume
46 N3bcda18232c547e380e218f879cbff9b schema:name readcube_id
47 schema:value 9ef94a64ecaa3da889e85fefb21d8f05db41351c140107002420663ff5551fb1
48 rdf:type schema:PropertyValue
49 N4ddf8d197e144e659103a3ef94f5f685 rdf:first sg:person.01305517101.00
50 rdf:rest rdf:nil
51 N4e0fbed2c77c428396275e6a251bd47a schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Nb73266b9aadb4fd39bdb4be7bbafd4a5 schema:issueNumber 2
54 rdf:type schema:PublicationIssue
55 Nb7f598244f0744f79c469b086695b73f schema:name dimensions_id
56 schema:value pub.1033371215
57 rdf:type schema:PropertyValue
58 Ne035dd2740fd46beaacee6985b512ee8 rdf:first sg:person.01025142664.99
59 rdf:rest N4ddf8d197e144e659103a3ef94f5f685
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
64 schema:name Statistics
65 rdf:type schema:DefinedTerm
66 sg:journal.1126672 schema:issn 0176-4268
67 1432-1343
68 schema:name Journal of Classification
69 rdf:type schema:Periodical
70 sg:person.01025142664.99 schema:affiliation https://www.grid.ac/institutes/grid.36425.36
71 schema:familyName Oden
72 schema:givenName Neal L.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025142664.99
74 rdf:type schema:Person
75 sg:person.01305517101.00 schema:affiliation https://www.grid.ac/institutes/grid.36425.36
76 schema:familyName Sokal
77 schema:givenName Robert R.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305517101.00
79 rdf:type schema:Person
80 sg:pub.10.1007/bf02296263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041425274
81 https://doi.org/10.1007/bf02296263
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf02515450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050504681
84 https://doi.org/10.1007/bf02515450
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/351143a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006373940
87 https://doi.org/10.1038/351143a0
88 rdf:type schema:CreativeWork
89 https://app.dimensions.ai/details/publication/pub.1079942514 schema:CreativeWork
90 https://app.dimensions.ai/details/publication/pub.1081518966 schema:CreativeWork
91 https://doi.org/10.1002/ajpa.1330680307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042255273
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/ajpa.1330720307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047084082
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0022-2496(81)90060-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000352525
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1073/pnas.85.5.1722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000666010
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1073/pnas.87.7.2715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003463204
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1086/285228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058595351
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1111/j.1095-8312.1978.tb00013.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045263449
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1111/j.1095-8312.1978.tb00014.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004109977
106 rdf:type schema:CreativeWork
107 https://doi.org/10.2307/2413122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069921440
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.36425.36 schema:alternateName Stony Brook University
110 schema:name Department of Ecology and Evolution, State University of New York, 11794-5245, Stony Brook, New York, USA
111 Department of Preventive Medicine, Division of Epidemiology, Health Sciences Center, State Univeresity of New York, 11794-8036, Stony Brook, New York, USA
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...