Arithmetic operations inGF(2m) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1993-03

AUTHORS

G. B. Agnew, T. Beth, R. C. Mullin, S. A. Vanstone

ABSTRACT

This article is concerned with various arithmetic operations inGF(2m). In particular we discuss techniques for computing multiplicative inverses and doing exponentiation. The method used for exponentiation is highly suited to parallel computation. All methods achieve much of their efficiency from exploiting a normal basis representation in the field.

PAGES

3-13

References to SciGraph publications

  • 1991-01. An implementation for a fast public-key cryptosystem in JOURNAL OF CRYPTOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02620228

    DOI

    http://dx.doi.org/10.1007/bf02620228

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035105071


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Agnew", 
            "givenName": "G. B.", 
            "id": "sg:person.012527570545.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527570545.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universitat Karlsruhe, Postfach 6980, D-7500, Karlsruhe 1, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7892.4", 
              "name": [
                "Universitat Karlsruhe, Postfach 6980, D-7500, Karlsruhe 1, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beth", 
            "givenName": "T.", 
            "id": "sg:person.015012354601.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012354601.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Combinatorics and Optimization and Department of Computer Science, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Combinatorics and Optimization and Department of Computer Science, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mullin", 
            "givenName": "R. C.", 
            "id": "sg:person.014125263130.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125263130.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Combinatorics and Optimization and Department of Computer Science, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Combinatorics and Optimization and Department of Computer Science, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vanstone", 
            "givenName": "S. A.", 
            "id": "sg:person.010344544767.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00196789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020123700", 
              "https://doi.org/10.1007/bf00196789"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-03", 
        "datePublishedReg": "1993-03-01", 
        "description": "This article is concerned with various arithmetic operations inGF(2m). In particular we discuss techniques for computing multiplicative inverses and doing exponentiation. The method used for exponentiation is highly suited to parallel computation. All methods achieve much of their efficiency from exploiting a normal basis representation in the field.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02620228", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136278", 
            "issn": [
              "0933-2790", 
              "1432-1378"
            ], 
            "name": "Journal of Cryptology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "arithmetic operations", 
          "parallel computation", 
          "basis representation", 
          "multiplicative inverse", 
          "normal basis representation", 
          "exponentiation", 
          "inverse", 
          "computation", 
          "field", 
          "representation", 
          "operation", 
          "method", 
          "technique", 
          "efficiency", 
          "article"
        ], 
        "name": "Arithmetic operations inGF(2m)", 
        "pagination": "3-13", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035105071"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02620228"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02620228", 
          "https://app.dimensions.ai/details/publication/pub.1035105071"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_256.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02620228"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02620228'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02620228'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02620228'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02620228'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      21 PREDICATES      40 URIs      31 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02620228 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Neef9368b9b5d4065b11cd988a8a98683
    4 schema:citation sg:pub.10.1007/bf00196789
    5 schema:datePublished 1993-03
    6 schema:datePublishedReg 1993-03-01
    7 schema:description This article is concerned with various arithmetic operations inGF(2m). In particular we discuss techniques for computing multiplicative inverses and doing exponentiation. The method used for exponentiation is highly suited to parallel computation. All methods achieve much of their efficiency from exploiting a normal basis representation in the field.
    8 schema:genre article
    9 schema:isAccessibleForFree true
    10 schema:isPartOf N3328a404df7f4668aad78e5044b654dd
    11 N43e7c48bdacd4e629d0ef4c5a24a90a9
    12 sg:journal.1136278
    13 schema:keywords arithmetic operations
    14 article
    15 basis representation
    16 computation
    17 efficiency
    18 exponentiation
    19 field
    20 inverse
    21 method
    22 multiplicative inverse
    23 normal basis representation
    24 operation
    25 parallel computation
    26 representation
    27 technique
    28 schema:name Arithmetic operations inGF(2m)
    29 schema:pagination 3-13
    30 schema:productId N0c1933210d3c4303acc375d661da8cd5
    31 N977d7167f63445d0bfe70a62e218d22f
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035105071
    33 https://doi.org/10.1007/bf02620228
    34 schema:sdDatePublished 2022-09-02T15:48
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N8060a809184f4b77b47ba4299fe503fc
    37 schema:url https://doi.org/10.1007/bf02620228
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N0c1933210d3c4303acc375d661da8cd5 schema:name dimensions_id
    42 schema:value pub.1035105071
    43 rdf:type schema:PropertyValue
    44 N3328a404df7f4668aad78e5044b654dd schema:volumeNumber 6
    45 rdf:type schema:PublicationVolume
    46 N43e7c48bdacd4e629d0ef4c5a24a90a9 schema:issueNumber 1
    47 rdf:type schema:PublicationIssue
    48 N8060a809184f4b77b47ba4299fe503fc schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N93a01ae219594c0fa0f2ac2b5111383f rdf:first sg:person.014125263130.39
    51 rdf:rest Nf8f8811f3e314df4a2fae24423bdbf6b
    52 N977d7167f63445d0bfe70a62e218d22f schema:name doi
    53 schema:value 10.1007/bf02620228
    54 rdf:type schema:PropertyValue
    55 Nd817f6ddf9ae427c81a5af8e7932ae56 rdf:first sg:person.015012354601.96
    56 rdf:rest N93a01ae219594c0fa0f2ac2b5111383f
    57 Neef9368b9b5d4065b11cd988a8a98683 rdf:first sg:person.012527570545.69
    58 rdf:rest Nd817f6ddf9ae427c81a5af8e7932ae56
    59 Nf8f8811f3e314df4a2fae24423bdbf6b rdf:first sg:person.010344544767.07
    60 rdf:rest rdf:nil
    61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Mathematical Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Applied Mathematics
    66 rdf:type schema:DefinedTerm
    67 sg:journal.1136278 schema:issn 0933-2790
    68 1432-1378
    69 schema:name Journal of Cryptology
    70 schema:publisher Springer Nature
    71 rdf:type schema:Periodical
    72 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
    73 schema:familyName Vanstone
    74 schema:givenName S. A.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
    76 rdf:type schema:Person
    77 sg:person.012527570545.69 schema:affiliation grid-institutes:grid.46078.3d
    78 schema:familyName Agnew
    79 schema:givenName G. B.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527570545.69
    81 rdf:type schema:Person
    82 sg:person.014125263130.39 schema:affiliation grid-institutes:grid.46078.3d
    83 schema:familyName Mullin
    84 schema:givenName R. C.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125263130.39
    86 rdf:type schema:Person
    87 sg:person.015012354601.96 schema:affiliation grid-institutes:grid.7892.4
    88 schema:familyName Beth
    89 schema:givenName T.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012354601.96
    91 rdf:type schema:Person
    92 sg:pub.10.1007/bf00196789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020123700
    93 https://doi.org/10.1007/bf00196789
    94 rdf:type schema:CreativeWork
    95 grid-institutes:grid.46078.3d schema:alternateName Department of Combinatorics and Optimization and Department of Computer Science, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    96 Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    97 schema:name Department of Combinatorics and Optimization and Department of Computer Science, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    98 Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    99 rdf:type schema:Organization
    100 grid-institutes:grid.7892.4 schema:alternateName Universitat Karlsruhe, Postfach 6980, D-7500, Karlsruhe 1, Federal Republic of Germany
    101 schema:name Universitat Karlsruhe, Postfach 6980, D-7500, Karlsruhe 1, Federal Republic of Germany
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...