Char-ashing of glyceride oils preliminary to the atomic absorption determination of their copper and iron contents View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1971-12

AUTHORS

C. D. Evans, G. R. List, L. T. Black

ABSTRACT

Trace amounts of copper and iron were determined by char-ashing samples of molecularly distilled glyceride oil, copper hydrogenated edible oils and salad oils with added copper salts and copper-chromite catalysts. Char-ashing, coupled with the atomic absorption method of analysis, gave excellent reproducibility in a salad oil for copper at 0.025 ± 0.002 ppm and for iron at 0.082 ± 0.012 ppm. Agreement was excellent between the char-ashing method and the direct solvent method of analysis when levels of the two trace metals were high enough to be analyzed by direct atomic absorption. Copper in edible oils can be accurately analyzed at levels of less than 10 ppb by the char-ashing technique. More... »

PAGES

840-842

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02609295

DOI

http://dx.doi.org/10.1007/bf02609295

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002986657


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Northern Regional Research Laboratory, 61604, Peoria, Illinois"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evans", 
        "givenName": "C. D.", 
        "id": "sg:person.063165734.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.063165734.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Northern Regional Research Laboratory, 61604, Peoria, Illinois"
          ], 
          "type": "Organization"
        }, 
        "familyName": "List", 
        "givenName": "G. R.", 
        "id": "sg:person.01332552514.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332552514.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Northern Regional Research Laboratory, 61604, Peoria, Illinois"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Black", 
        "givenName": "L. T.", 
        "id": "sg:person.055753157.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.055753157.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02640401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001402404", 
          "https://doi.org/10.1007/bf02640401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02612948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004006953", 
          "https://doi.org/10.1007/bf02612948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02631956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022316832", 
          "https://doi.org/10.1007/bf02631956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/206573a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034831078", 
          "https://doi.org/10.1038/206573a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02544656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035601355", 
          "https://doi.org/10.1007/bf02544656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02593292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039703092", 
          "https://doi.org/10.1007/bf02593292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02679872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040768014", 
          "https://doi.org/10.1007/bf02679872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60108a013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055030970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60223a035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055050265"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1971-12", 
    "datePublishedReg": "1971-12-01", 
    "description": "Trace amounts of copper and iron were determined by char-ashing samples of molecularly distilled glyceride oil, copper hydrogenated edible oils and salad oils with added copper salts and copper-chromite catalysts. Char-ashing, coupled with the atomic absorption method of analysis, gave excellent reproducibility in a salad oil for copper at 0.025 \u00b1 0.002 ppm and for iron at 0.082 \u00b1 0.012 ppm. Agreement was excellent between the char-ashing method and the direct solvent method of analysis when levels of the two trace metals were high enough to be analyzed by direct atomic absorption. Copper in edible oils can be accurately analyzed at levels of less than 10 ppb by the char-ashing technique.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02609295", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1082739", 
        "issn": [
          "0003-021X", 
          "1558-9331"
        ], 
        "name": "Journal of the American Oil Chemists' Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Char-ashing of glyceride oils preliminary to the atomic absorption determination of their copper and iron contents", 
    "pagination": "840-842", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0e3921d1b7a7801f29fe6d4071340a26b70995f80f656a5810cb54db59e0e1f0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02609295"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002986657"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02609295", 
      "https://app.dimensions.ai/details/publication/pub.1002986657"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02609295"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02609295'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02609295'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02609295'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02609295'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02609295 schema:about anzsrc-for:03
2 anzsrc-for:0399
3 schema:author N2a68f7fa861d4536be77dc6f7c406184
4 schema:citation sg:pub.10.1007/bf02544656
5 sg:pub.10.1007/bf02593292
6 sg:pub.10.1007/bf02612948
7 sg:pub.10.1007/bf02631956
8 sg:pub.10.1007/bf02640401
9 sg:pub.10.1007/bf02679872
10 sg:pub.10.1038/206573a0
11 https://doi.org/10.1021/ac60108a013
12 https://doi.org/10.1021/ac60223a035
13 schema:datePublished 1971-12
14 schema:datePublishedReg 1971-12-01
15 schema:description Trace amounts of copper and iron were determined by char-ashing samples of molecularly distilled glyceride oil, copper hydrogenated edible oils and salad oils with added copper salts and copper-chromite catalysts. Char-ashing, coupled with the atomic absorption method of analysis, gave excellent reproducibility in a salad oil for copper at 0.025 ± 0.002 ppm and for iron at 0.082 ± 0.012 ppm. Agreement was excellent between the char-ashing method and the direct solvent method of analysis when levels of the two trace metals were high enough to be analyzed by direct atomic absorption. Copper in edible oils can be accurately analyzed at levels of less than 10 ppb by the char-ashing technique.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N18ee4a0a717a414580057376841f4b0a
20 N49b8a36ecc1e4046a1a7898cb49e404c
21 sg:journal.1082739
22 schema:name Char-ashing of glyceride oils preliminary to the atomic absorption determination of their copper and iron contents
23 schema:pagination 840-842
24 schema:productId N774111b0e61443529b59a60965531647
25 Nebf240804f234bf78b4fcde2669fc4ef
26 Ned78b86eeb024868b076e2030c929f1c
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002986657
28 https://doi.org/10.1007/bf02609295
29 schema:sdDatePublished 2019-04-10T23:22
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nf1784a5fddbf4056812589cdb8e4f6f7
32 schema:url http://link.springer.com/10.1007%2FBF02609295
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N049427f09d18451fa1e203d74edb5b97 rdf:first sg:person.055753157.81
37 rdf:rest rdf:nil
38 N18ee4a0a717a414580057376841f4b0a schema:issueNumber 12
39 rdf:type schema:PublicationIssue
40 N2a68f7fa861d4536be77dc6f7c406184 rdf:first sg:person.063165734.36
41 rdf:rest N6a7e00feaeaa41eead6955f3916e687f
42 N49b8a36ecc1e4046a1a7898cb49e404c schema:volumeNumber 48
43 rdf:type schema:PublicationVolume
44 N6a7e00feaeaa41eead6955f3916e687f rdf:first sg:person.01332552514.28
45 rdf:rest N049427f09d18451fa1e203d74edb5b97
46 N774111b0e61443529b59a60965531647 schema:name dimensions_id
47 schema:value pub.1002986657
48 rdf:type schema:PropertyValue
49 Nebf240804f234bf78b4fcde2669fc4ef schema:name readcube_id
50 schema:value 0e3921d1b7a7801f29fe6d4071340a26b70995f80f656a5810cb54db59e0e1f0
51 rdf:type schema:PropertyValue
52 Ned78b86eeb024868b076e2030c929f1c schema:name doi
53 schema:value 10.1007/bf02609295
54 rdf:type schema:PropertyValue
55 Nf1784a5fddbf4056812589cdb8e4f6f7 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
58 schema:name Chemical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
61 schema:name Other Chemical Sciences
62 rdf:type schema:DefinedTerm
63 sg:journal.1082739 schema:issn 0003-021X
64 1558-9331
65 schema:name Journal of the American Oil Chemists' Society
66 rdf:type schema:Periodical
67 sg:person.01332552514.28 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
68 schema:familyName List
69 schema:givenName G. R.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332552514.28
71 rdf:type schema:Person
72 sg:person.055753157.81 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
73 schema:familyName Black
74 schema:givenName L. T.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.055753157.81
76 rdf:type schema:Person
77 sg:person.063165734.36 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
78 schema:familyName Evans
79 schema:givenName C. D.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.063165734.36
81 rdf:type schema:Person
82 sg:pub.10.1007/bf02544656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035601355
83 https://doi.org/10.1007/bf02544656
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf02593292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039703092
86 https://doi.org/10.1007/bf02593292
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf02612948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004006953
89 https://doi.org/10.1007/bf02612948
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf02631956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022316832
92 https://doi.org/10.1007/bf02631956
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf02640401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001402404
95 https://doi.org/10.1007/bf02640401
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf02679872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040768014
98 https://doi.org/10.1007/bf02679872
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/206573a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034831078
101 https://doi.org/10.1038/206573a0
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1021/ac60108a013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055030970
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1021/ac60223a035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055050265
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.463419.d schema:alternateName Agricultural Research Service
108 schema:name Northern Regional Research Laboratory, 61604, Peoria, Illinois
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...