Updating conjugate directions by the BFGS formula View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-07

AUTHORS

M. J. D. Powell

ABSTRACT

Many iterative algorithms for optimization calculations form positive definite second derivative approximations,B say, automatically, butB is not stored explicitly because of the need to solve equations of the formBd--g. We consider working with matricesZ, whose columns satisfy the conjugacy conditionsZ1BZ=1. Particular attention is given to updatingZ in a way that corresponds to revisingB by the BFGS formula. A procedure is proposed that seems to be much more stable than the direct use of a product formula [1]. An extension to this procedure provides some automatic rescaling of the columns ofZ, which avoids some inefficiencies due to a poor choice of the initial second derivative approximation. Our work is also relevant to active set methods for linear inequality constraints, to updating the Cholesky factorization ofB, and to explaining some properties of the BFGS algorithm. More... »

PAGES

29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02591850

DOI

http://dx.doi.org/10.1007/bf02591850

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039185361


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Powell", 
        "givenName": "M. J. D.", 
        "id": "sg:person.07731545105.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0025-5718-1976-0423804-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018209518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0121074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020764953", 
          "https://doi.org/10.1007/bfb0121074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0121074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020764953", 
          "https://doi.org/10.1007/bfb0121074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01681328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020786346", 
          "https://doi.org/10.1007/bf01681328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01681328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020786346", 
          "https://doi.org/10.1007/bf01681328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02591962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034228875", 
          "https://doi.org/10.1007/bf02591962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02591962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034228875", 
          "https://doi.org/10.1007/bf02591962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/11.1.73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059684298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/12.3.329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059684355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/9.1.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059685956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2005366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069692777"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-07", 
    "datePublishedReg": "1987-07-01", 
    "description": "Many iterative algorithms for optimization calculations form positive definite second derivative approximations,B say, automatically, butB is not stored explicitly because of the need to solve equations of the formBd--g. We consider working with matricesZ, whose columns satisfy the conjugacy conditionsZ1BZ=1. Particular attention is given to updatingZ in a way that corresponds to revisingB by the BFGS formula. A procedure is proposed that seems to be much more stable than the direct use of a product formula [1]. An extension to this procedure provides some automatic rescaling of the columns ofZ, which avoids some inefficiencies due to a poor choice of the initial second derivative approximation. Our work is also relevant to active set methods for linear inequality constraints, to updating the Cholesky factorization ofB, and to explaining some properties of the BFGS algorithm.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/bf02591850", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047630", 
        "issn": [
          "0025-5610", 
          "1436-4646"
        ], 
        "name": "Mathematical Programming", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Updating conjugate directions by the BFGS formula", 
    "pagination": "29", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "baa89d4e4e36ed17428a306b3d5856a5ecc571df2d701d65482d42804ee6d300"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02591850"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039185361"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02591850", 
      "https://app.dimensions.ai/details/publication/pub.1039185361"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46754_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02591850"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02591850'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02591850'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02591850'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02591850'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02591850 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nfb6d9bbf9e77494b89a13b242c3fe5b0
4 schema:citation sg:pub.10.1007/bf01681328
5 sg:pub.10.1007/bf02591962
6 sg:pub.10.1007/bfb0121074
7 https://doi.org/10.1090/s0025-5718-1976-0423804-2
8 https://doi.org/10.1093/imamat/11.1.73
9 https://doi.org/10.1093/imamat/12.3.329
10 https://doi.org/10.1093/imamat/9.1.91
11 https://doi.org/10.2307/2005366
12 schema:datePublished 1987-07
13 schema:datePublishedReg 1987-07-01
14 schema:description Many iterative algorithms for optimization calculations form positive definite second derivative approximations,B say, automatically, butB is not stored explicitly because of the need to solve equations of the formBd--g. We consider working with matricesZ, whose columns satisfy the conjugacy conditionsZ1BZ=1. Particular attention is given to updatingZ in a way that corresponds to revisingB by the BFGS formula. A procedure is proposed that seems to be much more stable than the direct use of a product formula [1]. An extension to this procedure provides some automatic rescaling of the columns ofZ, which avoids some inefficiencies due to a poor choice of the initial second derivative approximation. Our work is also relevant to active set methods for linear inequality constraints, to updating the Cholesky factorization ofB, and to explaining some properties of the BFGS algorithm.
15 schema:genre non_research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N30973991ca4041deac465f397af7c548
19 N510eefe77f17433fa67b992976736de6
20 sg:journal.1047630
21 schema:name Updating conjugate directions by the BFGS formula
22 schema:pagination 29
23 schema:productId N92b31acb14ff4d32a1561c415b3f1999
24 N9d365f74b03d4ac198d1e653717cc30b
25 Na1ab4e478d6940298f929bccac38ad1c
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039185361
27 https://doi.org/10.1007/bf02591850
28 schema:sdDatePublished 2019-04-11T13:31
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N466bf30484dd428cb327c71c5c6ca787
31 schema:url http://link.springer.com/10.1007%2FBF02591850
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N30973991ca4041deac465f397af7c548 schema:issueNumber 1
36 rdf:type schema:PublicationIssue
37 N466bf30484dd428cb327c71c5c6ca787 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N510eefe77f17433fa67b992976736de6 schema:volumeNumber 38
40 rdf:type schema:PublicationVolume
41 N92b31acb14ff4d32a1561c415b3f1999 schema:name dimensions_id
42 schema:value pub.1039185361
43 rdf:type schema:PropertyValue
44 N9d365f74b03d4ac198d1e653717cc30b schema:name readcube_id
45 schema:value baa89d4e4e36ed17428a306b3d5856a5ecc571df2d701d65482d42804ee6d300
46 rdf:type schema:PropertyValue
47 Na1ab4e478d6940298f929bccac38ad1c schema:name doi
48 schema:value 10.1007/bf02591850
49 rdf:type schema:PropertyValue
50 Nfb6d9bbf9e77494b89a13b242c3fe5b0 rdf:first sg:person.07731545105.07
51 rdf:rest rdf:nil
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
56 schema:name Numerical and Computational Mathematics
57 rdf:type schema:DefinedTerm
58 sg:journal.1047630 schema:issn 0025-5610
59 1436-4646
60 schema:name Mathematical Programming
61 rdf:type schema:Periodical
62 sg:person.07731545105.07 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
63 schema:familyName Powell
64 schema:givenName M. J. D.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07
66 rdf:type schema:Person
67 sg:pub.10.1007/bf01681328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020786346
68 https://doi.org/10.1007/bf01681328
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/bf02591962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034228875
71 https://doi.org/10.1007/bf02591962
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bfb0121074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020764953
74 https://doi.org/10.1007/bfb0121074
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1090/s0025-5718-1976-0423804-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018209518
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1093/imamat/11.1.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059684298
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1093/imamat/12.3.329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059684355
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1093/imamat/9.1.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059685956
83 rdf:type schema:CreativeWork
84 https://doi.org/10.2307/2005366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069692777
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
87 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...