Dendrite growth directions in aluminum-zinc alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-09

AUTHORS

F. Gonzales, M. Rappaz

ABSTRACT

The dendrite growth directions in fcc aluminum-zinc alloys have been measured by electron backscattered diffraction (EBSD) as a function of the zinc concentration,co. In specimens produced by directional or Bridgman solidification, 〈100〉 dendrites were observed up to 25 wt pct Zn, whereas, above 60 wt pct, the dendrite growth direction was clearly 〈110〉. In between these two concentrations, the angle, φ(co), between 〈100〉 and the 〈hk0〉 dendrite growth direction, varied continuously between 0 and 45 deg asco increased. Following an analysis of growth directions suggested by Karma but restricted to two dimensions in a (001) plane,[1] this angle was fitted with a function ¼ arcos (−η4/4η8), where η4(co) cos (4φ) and η8(co) cos (8φ) are the first two contributions to the solid-liquid interfacial stiffness anisotropy in a (001) plane. This analysis also gives a qualitative explanation to textured seaweed structures observed aroundco ≈ 25 and 60 wt pct. These findings are discussed in light of recent measurements of the weak interfacial solid-liquid energy anisotropy of aluminum[2,3] and of dendrite growth directions in hcp Zn-Al alloys.[4] More... »

PAGES

2797-2806

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02586112

DOI

http://dx.doi.org/10.1007/bf02586112

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013232379


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "the Computational Materials Laboratory, Institute of Materials School of Engineering, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "the Computational Materials Laboratory, Institute of Materials School of Engineering, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzales", 
        "givenName": "F.", 
        "id": "sg:person.0667120200.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667120200.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Computational Materials Laboratory, Institute of Materials School of Engineering, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "the Computational Materials Laboratory, Institute of Materials School of Engineering, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaz", 
        "givenName": "M.", 
        "id": "sg:person.013657516157.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11661-002-0391-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029798677", 
          "https://doi.org/10.1007/s11661-002-0391-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-000-0284-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027168783", 
          "https://doi.org/10.1007/s11661-000-0284-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-004-0191-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045396520", 
          "https://doi.org/10.1007/s11661-004-0191-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02647605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008404524", 
          "https://doi.org/10.1007/bf02647605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-000-0172-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032924814", 
          "https://doi.org/10.1007/s11661-000-0172-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-004-0064-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014696340", 
          "https://doi.org/10.1007/s11661-004-0064-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-09", 
    "datePublishedReg": "2006-09-01", 
    "description": "The dendrite growth directions in fcc aluminum-zinc alloys have been measured by electron backscattered diffraction (EBSD) as a function of the zinc concentration,co. In specimens produced by directional or Bridgman solidification, \u3008100\u3009 dendrites were observed up to 25 wt pct Zn, whereas, above 60 wt pct, the dendrite growth direction was clearly \u3008110\u3009. In between these two concentrations, the angle, \u03c6(co), between \u3008100\u3009 and the \u3008hk0\u3009 dendrite growth direction, varied continuously between 0 and 45 deg asco increased. Following an analysis of growth directions suggested by Karma but restricted to two dimensions in a (001) plane,[1] this angle was fitted with a function \u00bc arcos (\u2212\u03b74/4\u03b78), where \u03b74(co) cos (4\u03c6) and \u03b78(co) cos (8\u03c6) are the first two contributions to the solid-liquid interfacial stiffness anisotropy in a (001) plane. This analysis also gives a qualitative explanation to textured seaweed structures observed aroundco \u2248 25 and 60 wt pct. These findings are discussed in light of recent measurements of the weak interfacial solid-liquid energy anisotropy of aluminum[2,3] and of dendrite growth directions in hcp Zn-Al alloys.[4]", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02586112", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "dendrite growth direction", 
      "aluminum-zinc alloys", 
      "growth direction", 
      "Bridgman solidification", 
      "stiffness anisotropy", 
      "energy anisotropy", 
      "Zn-Al", 
      "alloy", 
      "wt", 
      "CO", 
      "solidification", 
      "angle", 
      "direction", 
      "anisotropy", 
      "qualitative explanation", 
      "seaweed structure", 
      "diffraction", 
      "measurements", 
      "specimens", 
      "plane", 
      "recent measurements", 
      "concentration", 
      "structure", 
      "Zn", 
      "analysis", 
      "electrons", 
      "dendrites", 
      "dimensions", 
      "function", 
      "Arco", 
      "contribution", 
      "light", 
      "zinc concentrations", 
      "explanation", 
      "findings", 
      "ASCO", 
      "karma"
    ], 
    "name": "Dendrite growth directions in aluminum-zinc alloys", 
    "pagination": "2797-2806", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013232379"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02586112"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02586112", 
      "https://app.dimensions.ai/details/publication/pub.1013232379"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_416.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02586112"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02586112'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02586112'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02586112'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02586112'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      68 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02586112 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6909653fa1894d58b448540e34363234
4 schema:citation sg:pub.10.1007/bf02647605
5 sg:pub.10.1007/s11661-000-0172-5
6 sg:pub.10.1007/s11661-000-0284-y
7 sg:pub.10.1007/s11661-002-0391-z
8 sg:pub.10.1007/s11661-004-0064-1
9 sg:pub.10.1007/s11661-004-0191-8
10 schema:datePublished 2006-09
11 schema:datePublishedReg 2006-09-01
12 schema:description The dendrite growth directions in fcc aluminum-zinc alloys have been measured by electron backscattered diffraction (EBSD) as a function of the zinc concentration,co. In specimens produced by directional or Bridgman solidification, 〈100〉 dendrites were observed up to 25 wt pct Zn, whereas, above 60 wt pct, the dendrite growth direction was clearly 〈110〉. In between these two concentrations, the angle, φ(co), between 〈100〉 and the 〈hk0〉 dendrite growth direction, varied continuously between 0 and 45 deg asco increased. Following an analysis of growth directions suggested by Karma but restricted to two dimensions in a (001) plane,[1] this angle was fitted with a function ¼ arcos (−η4/4η8), where η4(co) cos (4φ) and η8(co) cos (8φ) are the first two contributions to the solid-liquid interfacial stiffness anisotropy in a (001) plane. This analysis also gives a qualitative explanation to textured seaweed structures observed aroundco ≈ 25 and 60 wt pct. These findings are discussed in light of recent measurements of the weak interfacial solid-liquid energy anisotropy of aluminum[2,3] and of dendrite growth directions in hcp Zn-Al alloys.[4]
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf Nbf46b78343b04a7e9fa1ec95c05bbf69
16 Ndd87fca47a60421885de78d9a8de133c
17 sg:journal.1136292
18 schema:keywords ASCO
19 Arco
20 Bridgman solidification
21 CO
22 Zn
23 Zn-Al
24 alloy
25 aluminum-zinc alloys
26 analysis
27 angle
28 anisotropy
29 concentration
30 contribution
31 dendrite growth direction
32 dendrites
33 diffraction
34 dimensions
35 direction
36 electrons
37 energy anisotropy
38 explanation
39 findings
40 function
41 growth direction
42 karma
43 light
44 measurements
45 plane
46 qualitative explanation
47 recent measurements
48 seaweed structure
49 solidification
50 specimens
51 stiffness anisotropy
52 structure
53 wt
54 zinc concentrations
55 schema:name Dendrite growth directions in aluminum-zinc alloys
56 schema:pagination 2797-2806
57 schema:productId N86541ca6d9c04a89a22c417be78a6727
58 Nf75b8ea20e07421d99bf66ed68da21c9
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013232379
60 https://doi.org/10.1007/bf02586112
61 schema:sdDatePublished 2022-12-01T06:25
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N014661760ba3481982ab010b964f5760
64 schema:url https://doi.org/10.1007/bf02586112
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N014661760ba3481982ab010b964f5760 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N079e7f408e784b20a6d44e405a897b9a rdf:first sg:person.013657516157.10
71 rdf:rest rdf:nil
72 N6909653fa1894d58b448540e34363234 rdf:first sg:person.0667120200.67
73 rdf:rest N079e7f408e784b20a6d44e405a897b9a
74 N86541ca6d9c04a89a22c417be78a6727 schema:name doi
75 schema:value 10.1007/bf02586112
76 rdf:type schema:PropertyValue
77 Nbf46b78343b04a7e9fa1ec95c05bbf69 schema:volumeNumber 37
78 rdf:type schema:PublicationVolume
79 Ndd87fca47a60421885de78d9a8de133c schema:issueNumber 9
80 rdf:type schema:PublicationIssue
81 Nf75b8ea20e07421d99bf66ed68da21c9 schema:name dimensions_id
82 schema:value pub.1013232379
83 rdf:type schema:PropertyValue
84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
85 schema:name Engineering
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
88 schema:name Materials Engineering
89 rdf:type schema:DefinedTerm
90 sg:journal.1136292 schema:issn 1073-5623
91 1543-1940
92 schema:name Metallurgical and Materials Transactions A
93 schema:publisher Springer Nature
94 rdf:type schema:Periodical
95 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
96 schema:familyName Rappaz
97 schema:givenName M.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
99 rdf:type schema:Person
100 sg:person.0667120200.67 schema:affiliation grid-institutes:grid.5333.6
101 schema:familyName Gonzales
102 schema:givenName F.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667120200.67
104 rdf:type schema:Person
105 sg:pub.10.1007/bf02647605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008404524
106 https://doi.org/10.1007/bf02647605
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11661-000-0172-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032924814
109 https://doi.org/10.1007/s11661-000-0172-5
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s11661-000-0284-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027168783
112 https://doi.org/10.1007/s11661-000-0284-y
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s11661-002-0391-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029798677
115 https://doi.org/10.1007/s11661-002-0391-z
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11661-004-0064-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014696340
118 https://doi.org/10.1007/s11661-004-0064-1
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11661-004-0191-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045396520
121 https://doi.org/10.1007/s11661-004-0191-8
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.5333.6 schema:alternateName the Computational Materials Laboratory, Institute of Materials School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
124 schema:name the Computational Materials Laboratory, Institute of Materials School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...