Quasi-periodic solutions of nonlinear elliptic partial differential equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-10

AUTHORS

Jürgen Moser

ABSTRACT

In a recent paper [9] the KAM theory has been extended to non-linear partial differential equations, to construct quasi-periodic solutions. In this article this theory is illustrated with three typical examples: an elliptic partial differential equation, an ordinary differential equation and a difference equation related to monotone twist mappings.

PAGES

29-45

References to SciGraph publications

  • 2007-06-22. Break-down of stability in LECTURE NOTES IN PHYSICS
  • 1987-06. The existence of gaps in minimal foliations in AEQUATIONES MATHEMATICAE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02585466

    DOI

    http://dx.doi.org/10.1007/bf02585466

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034602990


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Swiss Federal Institute of Technology in Zurich", 
              "id": "https://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Eidg. Techn. Hochschule, Z\u00fcrich"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moser", 
            "givenName": "J\u00fcrgen", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0107359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010501391", 
              "https://doi.org/10.1007/bfb0107359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0107359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010501391", 
              "https://doi.org/10.1007/bfb0107359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700009421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013873247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700009421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013873247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0273-0979-1982-15004-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036521043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01830667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047588907", 
              "https://doi.org/10.1007/bf01830667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01830667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047588907", 
              "https://doi.org/10.1007/bf01830667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700009457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051904985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700009457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051904985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700009457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051904985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700002455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053864707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700002455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053864707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0294-1449(16)30387-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084044614"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1989-10", 
        "datePublishedReg": "1989-10-01", 
        "description": "In a recent paper [9] the KAM theory has been extended to non-linear partial differential equations, to construct quasi-periodic solutions. In this article this theory is illustrated with three typical examples: an elliptic partial differential equation, an ordinary differential equation and a difference equation related to monotone twist mappings.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02585466", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295198", 
            "issn": [
              "0100-3569", 
              "1678-7714"
            ], 
            "name": "Bulletin of the Brazilian Mathematical Society, New Series", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "Quasi-periodic solutions of nonlinear elliptic partial differential equations", 
        "pagination": "29-45", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a4d624a86e57152cac3164c3fe29ebe30500646f91899396b042400fd044c168"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02585466"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034602990"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02585466", 
          "https://app.dimensions.ai/details/publication/pub.1034602990"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46754_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02585466"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02585466'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02585466'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02585466'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02585466'


     

    This table displays all metadata directly associated to this object as RDF triples.

    83 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02585466 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3121fe48bf104fbc8c33d059b3557437
    4 schema:citation sg:pub.10.1007/bf01830667
    5 sg:pub.10.1007/bfb0107359
    6 https://doi.org/10.1016/s0294-1449(16)30387-0
    7 https://doi.org/10.1017/s0143385700002455
    8 https://doi.org/10.1017/s0143385700009421
    9 https://doi.org/10.1017/s0143385700009457
    10 https://doi.org/10.1090/s0273-0979-1982-15004-2
    11 schema:datePublished 1989-10
    12 schema:datePublishedReg 1989-10-01
    13 schema:description In a recent paper [9] the KAM theory has been extended to non-linear partial differential equations, to construct quasi-periodic solutions. In this article this theory is illustrated with three typical examples: an elliptic partial differential equation, an ordinary differential equation and a difference equation related to monotone twist mappings.
    14 schema:genre research_article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N52183122c4af4db89b9dec1569380599
    18 N69f6d53a83dc4ff493eeb6aaca9ba38a
    19 sg:journal.1295198
    20 schema:name Quasi-periodic solutions of nonlinear elliptic partial differential equations
    21 schema:pagination 29-45
    22 schema:productId N0e669810681e489397ae1a6036c54aeb
    23 N3c6a2f4253834dc78fa326f137f41ef1
    24 Nbcbcfda83ba34bd2ab90905494b16d7b
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034602990
    26 https://doi.org/10.1007/bf02585466
    27 schema:sdDatePublished 2019-04-11T13:30
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher N86a36ef880a6443995d49fcc46fb6b1e
    30 schema:url http://link.springer.com/10.1007%2FBF02585466
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset articles
    33 rdf:type schema:ScholarlyArticle
    34 N0e669810681e489397ae1a6036c54aeb schema:name dimensions_id
    35 schema:value pub.1034602990
    36 rdf:type schema:PropertyValue
    37 N3121fe48bf104fbc8c33d059b3557437 rdf:first Ncfede5e708f04573af8b756c2f327b5c
    38 rdf:rest rdf:nil
    39 N3c6a2f4253834dc78fa326f137f41ef1 schema:name doi
    40 schema:value 10.1007/bf02585466
    41 rdf:type schema:PropertyValue
    42 N52183122c4af4db89b9dec1569380599 schema:issueNumber 1
    43 rdf:type schema:PublicationIssue
    44 N69f6d53a83dc4ff493eeb6aaca9ba38a schema:volumeNumber 20
    45 rdf:type schema:PublicationVolume
    46 N86a36ef880a6443995d49fcc46fb6b1e schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 Nbcbcfda83ba34bd2ab90905494b16d7b schema:name readcube_id
    49 schema:value a4d624a86e57152cac3164c3fe29ebe30500646f91899396b042400fd044c168
    50 rdf:type schema:PropertyValue
    51 Ncfede5e708f04573af8b756c2f327b5c schema:affiliation https://www.grid.ac/institutes/grid.5801.c
    52 schema:familyName Moser
    53 schema:givenName Jürgen
    54 rdf:type schema:Person
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Pure Mathematics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1295198 schema:issn 0100-3569
    62 1678-7714
    63 schema:name Bulletin of the Brazilian Mathematical Society, New Series
    64 rdf:type schema:Periodical
    65 sg:pub.10.1007/bf01830667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047588907
    66 https://doi.org/10.1007/bf01830667
    67 rdf:type schema:CreativeWork
    68 sg:pub.10.1007/bfb0107359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010501391
    69 https://doi.org/10.1007/bfb0107359
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1016/s0294-1449(16)30387-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084044614
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1017/s0143385700002455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053864707
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1017/s0143385700009421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013873247
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1017/s0143385700009457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051904985
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1090/s0273-0979-1982-15004-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036521043
    80 rdf:type schema:CreativeWork
    81 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
    82 schema:name Eidg. Techn. Hochschule, Zürich
    83 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...