Harmonic distortion from nonlinear systems with broadband inputs: Applications to lung mechanics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-09

AUTHORS

Qin Zhang, Béla Suki, Kenneth R. Lutchen

ABSTRACT

We present a simple index, extended harmonic distortion (kd), to represent the degree of system nonlinearity under sparse pseudorandom noise inputs (SPRN). The frequencies in a SPRN waveform are neither harmonics nor sums or differences of the other component frequencies. Expressed by percentage, the kd is the square root of the ratio of output power at non-input frequencies to the total output power. We evoke three simple corrections to recover the true kd under imperfect SPRN inputs. Simulations on two block-structured nonlinear models (Wiener and Hammerstein) demonstrate the necessity and effectiveness of these corrections especially for the Wiener-type nonlinearity. By applying kd to pressure-flow data of dog lungs, we found that the nonlinear harmonic interactions from a lung arise primarily from its tissues most likely the processes governing the tissue stiffness. This nonlinearity, assessed from kd, is stronger at higher tidal volumes and enhanced (but to a lesser degree) during bronchoconstriction. We conclude that since the kd approach avoids the necessity for multiple-input measurements and lengthy data records, it may be useful for tracking the dynamic variations in nonlinearities of a physiological system. More... »

PAGES

672-681

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02584464

DOI

http://dx.doi.org/10.1007/bf02584464

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001258517

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7503467


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dogs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nonlinear Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Numerical Analysis, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory Mechanics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 44 Commington Street, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Qin", 
        "id": "sg:person.01070030456.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070030456.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 44 Commington Street, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suki", 
        "givenName": "B\u00e9la", 
        "id": "sg:person.0730323706.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 44 Commington Street, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lutchen", 
        "givenName": "Kenneth R.", 
        "id": "sg:person.011222222577.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011222222577.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1164/ajrccm/143.2.240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000384068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02584256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001057939", 
          "https://doi.org/10.1007/bf02584256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02584256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001057939", 
          "https://doi.org/10.1007/bf02584256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(80)85146-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033988816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1752-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037020291", 
          "https://doi.org/10.1007/978-1-4757-1752-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1752-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037020291", 
          "https://doi.org/10.1007/978-1-4757-1752-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.76.2.996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042685670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02368468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051804178", 
          "https://doi.org/10.1007/bf02368468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02368468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051804178", 
          "https://doi.org/10.1007/bf02368468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.168693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061084098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1956.8.4.427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075609473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1992.73.2.427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076180284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1992.73.3.1040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076180685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1992.73.6.2681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076751767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1992.73.1.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076820272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1992.72.4.1332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077059847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1991.71.3.826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077432595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1991.71.1.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077842430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1990.68.5.2128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078452952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1989.67.6.2408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079102854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1986.60.1.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079462070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1988.65.6.2490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079533658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.1987.252.3.h585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079973842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1995.79.2.660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082426798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1994.77.6.2689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082555454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1994.77.1.373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082583818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1994.76.2.830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082686940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1993.75.3.1062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082710691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1993.74.5.2574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082762472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1993.75.1.478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082780952"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-09", 
    "datePublishedReg": "1995-09-01", 
    "description": "We present a simple index, extended harmonic distortion (kd), to represent the degree of system nonlinearity under sparse pseudorandom noise inputs (SPRN). The frequencies in a SPRN waveform are neither harmonics nor sums or differences of the other component frequencies. Expressed by percentage, the kd is the square root of the ratio of output power at non-input frequencies to the total output power. We evoke three simple corrections to recover the true kd under imperfect SPRN inputs. Simulations on two block-structured nonlinear models (Wiener and Hammerstein) demonstrate the necessity and effectiveness of these corrections especially for the Wiener-type nonlinearity. By applying kd to pressure-flow data of dog lungs, we found that the nonlinear harmonic interactions from a lung arise primarily from its tissues most likely the processes governing the tissue stiffness. This nonlinearity, assessed from kd, is stronger at higher tidal volumes and enhanced (but to a lesser degree) during bronchoconstriction. We conclude that since the kd approach avoids the necessity for multiple-input measurements and lengthy data records, it may be useful for tracking the dynamic variations in nonlinearities of a physiological system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02584464", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2534570", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Harmonic distortion from nonlinear systems with broadband inputs: Applications to lung mechanics", 
    "pagination": "672-681", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "05fe87210d8550f30faa611445cb035ae745cfed9238a3a44e4534a1a889534b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7503467"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02584464"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001258517"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02584464", 
      "https://app.dimensions.ai/details/publication/pub.1001258517"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46775_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02584464"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02584464'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02584464'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02584464'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02584464'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      65 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02584464 schema:about N5133481228c84c3ba9d472d5e628ac78
2 N691c13dfe1974b38b80745f7ee7017a7
3 N85dcc51f06bb4096b55e1322f6f16fa3
4 Nb35517638fe14db48120248486e612c0
5 Nb78cb10379464023b1dd17a781fa0017
6 Nc572ea8fa68d4e11a61e4b35c3fedad0
7 Ne3ece5e0136749b1a3402c0a4985f6de
8 Nf6c8590307694622b355afebebe00bff
9 Nf7d3c45bb1bd44b7851ab3863559132e
10 anzsrc-for:01
11 anzsrc-for:0104
12 schema:author Nb1d6f9275ede47259868dd2d83a031b0
13 schema:citation sg:pub.10.1007/978-1-4757-1752-5
14 sg:pub.10.1007/bf02368468
15 sg:pub.10.1007/bf02584256
16 https://doi.org/10.1016/s0006-3495(80)85146-0
17 https://doi.org/10.1073/pnas.76.2.996
18 https://doi.org/10.1109/10.168693
19 https://doi.org/10.1152/ajpheart.1987.252.3.h585
20 https://doi.org/10.1152/jappl.1956.8.4.427
21 https://doi.org/10.1152/jappl.1986.60.1.123
22 https://doi.org/10.1152/jappl.1988.65.6.2490
23 https://doi.org/10.1152/jappl.1989.67.6.2408
24 https://doi.org/10.1152/jappl.1990.68.5.2128
25 https://doi.org/10.1152/jappl.1991.71.1.69
26 https://doi.org/10.1152/jappl.1991.71.3.826
27 https://doi.org/10.1152/jappl.1992.72.4.1332
28 https://doi.org/10.1152/jappl.1992.73.1.207
29 https://doi.org/10.1152/jappl.1992.73.2.427
30 https://doi.org/10.1152/jappl.1992.73.3.1040
31 https://doi.org/10.1152/jappl.1992.73.6.2681
32 https://doi.org/10.1152/jappl.1993.74.5.2574
33 https://doi.org/10.1152/jappl.1993.75.1.478
34 https://doi.org/10.1152/jappl.1993.75.3.1062
35 https://doi.org/10.1152/jappl.1994.76.2.830
36 https://doi.org/10.1152/jappl.1994.77.1.373
37 https://doi.org/10.1152/jappl.1994.77.6.2689
38 https://doi.org/10.1152/jappl.1995.79.2.660
39 https://doi.org/10.1164/ajrccm/143.2.240
40 schema:datePublished 1995-09
41 schema:datePublishedReg 1995-09-01
42 schema:description We present a simple index, extended harmonic distortion (kd), to represent the degree of system nonlinearity under sparse pseudorandom noise inputs (SPRN). The frequencies in a SPRN waveform are neither harmonics nor sums or differences of the other component frequencies. Expressed by percentage, the kd is the square root of the ratio of output power at non-input frequencies to the total output power. We evoke three simple corrections to recover the true kd under imperfect SPRN inputs. Simulations on two block-structured nonlinear models (Wiener and Hammerstein) demonstrate the necessity and effectiveness of these corrections especially for the Wiener-type nonlinearity. By applying kd to pressure-flow data of dog lungs, we found that the nonlinear harmonic interactions from a lung arise primarily from its tissues most likely the processes governing the tissue stiffness. This nonlinearity, assessed from kd, is stronger at higher tidal volumes and enhanced (but to a lesser degree) during bronchoconstriction. We conclude that since the kd approach avoids the necessity for multiple-input measurements and lengthy data records, it may be useful for tracking the dynamic variations in nonlinearities of a physiological system.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N86a09d24db2a446abdee26cdd442b4d4
47 N89bd77c49a2342fba682b1d8ba122043
48 sg:journal.1087247
49 schema:name Harmonic distortion from nonlinear systems with broadband inputs: Applications to lung mechanics
50 schema:pagination 672-681
51 schema:productId N1340d23c072c4770ab85ddcb57a00377
52 N1514615284454c3a96e2f2cb2bd9755d
53 N49ae406415904d028ee4d281a03b4999
54 Nb428537c6aa8452ca283c707c72ede25
55 Nf233cf8cc0984481907992be26e0944d
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001258517
57 https://doi.org/10.1007/bf02584464
58 schema:sdDatePublished 2019-04-11T13:35
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nc227ecfebc324e30b90ccbe18871136e
61 schema:url http://link.springer.com/10.1007%2FBF02584464
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N1340d23c072c4770ab85ddcb57a00377 schema:name doi
66 schema:value 10.1007/bf02584464
67 rdf:type schema:PropertyValue
68 N1514615284454c3a96e2f2cb2bd9755d schema:name readcube_id
69 schema:value 05fe87210d8550f30faa611445cb035ae745cfed9238a3a44e4534a1a889534b
70 rdf:type schema:PropertyValue
71 N29e4842ede974645a82168e8f4bafa82 rdf:first sg:person.011222222577.85
72 rdf:rest rdf:nil
73 N49ae406415904d028ee4d281a03b4999 schema:name pubmed_id
74 schema:value 7503467
75 rdf:type schema:PropertyValue
76 N5133481228c84c3ba9d472d5e628ac78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Numerical Analysis, Computer-Assisted
78 rdf:type schema:DefinedTerm
79 N691c13dfe1974b38b80745f7ee7017a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Dogs
81 rdf:type schema:DefinedTerm
82 N85dcc51f06bb4096b55e1322f6f16fa3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Animals
84 rdf:type schema:DefinedTerm
85 N86a09d24db2a446abdee26cdd442b4d4 schema:issueNumber 5
86 rdf:type schema:PublicationIssue
87 N89bd77c49a2342fba682b1d8ba122043 schema:volumeNumber 23
88 rdf:type schema:PublicationVolume
89 Nb1d6f9275ede47259868dd2d83a031b0 rdf:first sg:person.01070030456.05
90 rdf:rest Nf0f5334997f3447da8a5e675289d216d
91 Nb35517638fe14db48120248486e612c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Computer Simulation
93 rdf:type schema:DefinedTerm
94 Nb428537c6aa8452ca283c707c72ede25 schema:name nlm_unique_id
95 schema:value 0361512
96 rdf:type schema:PropertyValue
97 Nb78cb10379464023b1dd17a781fa0017 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Nonlinear Dynamics
99 rdf:type schema:DefinedTerm
100 Nc227ecfebc324e30b90ccbe18871136e schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nc572ea8fa68d4e11a61e4b35c3fedad0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Reproducibility of Results
104 rdf:type schema:DefinedTerm
105 Ne3ece5e0136749b1a3402c0a4985f6de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Respiratory Mechanics
107 rdf:type schema:DefinedTerm
108 Nf0f5334997f3447da8a5e675289d216d rdf:first sg:person.0730323706.34
109 rdf:rest N29e4842ede974645a82168e8f4bafa82
110 Nf233cf8cc0984481907992be26e0944d schema:name dimensions_id
111 schema:value pub.1001258517
112 rdf:type schema:PropertyValue
113 Nf6c8590307694622b355afebebe00bff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Signal Processing, Computer-Assisted
115 rdf:type schema:DefinedTerm
116 Nf7d3c45bb1bd44b7851ab3863559132e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Bias
118 rdf:type schema:DefinedTerm
119 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
120 schema:name Mathematical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
123 schema:name Statistics
124 rdf:type schema:DefinedTerm
125 sg:grant.2534570 http://pending.schema.org/fundedItem sg:pub.10.1007/bf02584464
126 rdf:type schema:MonetaryGrant
127 sg:journal.1087247 schema:issn 0145-3068
128 1573-9686
129 schema:name Annals of Biomedical Engineering
130 rdf:type schema:Periodical
131 sg:person.01070030456.05 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
132 schema:familyName Zhang
133 schema:givenName Qin
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070030456.05
135 rdf:type schema:Person
136 sg:person.011222222577.85 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
137 schema:familyName Lutchen
138 schema:givenName Kenneth R.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011222222577.85
140 rdf:type schema:Person
141 sg:person.0730323706.34 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
142 schema:familyName Suki
143 schema:givenName Béla
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34
145 rdf:type schema:Person
146 sg:pub.10.1007/978-1-4757-1752-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037020291
147 https://doi.org/10.1007/978-1-4757-1752-5
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf02368468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051804178
150 https://doi.org/10.1007/bf02368468
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/bf02584256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001057939
153 https://doi.org/10.1007/bf02584256
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0006-3495(80)85146-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033988816
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1073/pnas.76.2.996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042685670
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/10.168693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084098
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1152/ajpheart.1987.252.3.h585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079973842
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1152/jappl.1956.8.4.427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075609473
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1152/jappl.1986.60.1.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079462070
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1152/jappl.1988.65.6.2490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079533658
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1152/jappl.1989.67.6.2408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079102854
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1152/jappl.1990.68.5.2128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078452952
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1152/jappl.1991.71.1.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077842430
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1152/jappl.1991.71.3.826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077432595
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1152/jappl.1992.72.4.1332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077059847
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1152/jappl.1992.73.1.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076820272
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1152/jappl.1992.73.2.427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076180284
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1152/jappl.1992.73.3.1040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076180685
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1152/jappl.1992.73.6.2681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076751767
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1152/jappl.1993.74.5.2574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082762472
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1152/jappl.1993.75.1.478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082780952
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1152/jappl.1993.75.3.1062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082710691
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1152/jappl.1994.76.2.830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082686940
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1152/jappl.1994.77.1.373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082583818
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1152/jappl.1994.77.6.2689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082555454
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1152/jappl.1995.79.2.660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082426798
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1164/ajrccm/143.2.240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000384068
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
204 schema:name Department of Biomedical Engineering, Boston University, 44 Commington Street, 02215, Boston, MA, USA
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...