Independence numbers of graphs and generators of ideals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-03

AUTHORS

Shuo-Yen Robert Li, Wen-Ch’ing Winnie Li

ABSTRACT

This article investigates the generators of certain homogeneous ideals which are associated with graphs with bounded independence numbers. These ideals first appeared in the theory oft-designs. The main theorem suggests a new approach to the Clique Problem which isNP-complete. This theorem has a more general form in commutative algebra dealing with ideals associated with unions of linear varieties. This general theorem is stated in the article; a corollary to it generalizes Turán’s theorem on the maximum graphs with a prescribed clique number. More... »

PAGES

55-61

Journal

TITLE

Combinatorica

ISSUE

1

VOLUME

1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02579177

DOI

http://dx.doi.org/10.1007/bf02579177

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030969231


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Illinois at Chicago", 
          "id": "https://www.grid.ac/institutes/grid.185648.6", 
          "name": [
            "Department of Mathematics, University of Illinois at Chicago Circle, 60680, Chicago, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shuo-Yen Robert", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Illinois at Chicago", 
          "id": "https://www.grid.ac/institutes/grid.185648.6", 
          "name": [
            "Department of Mathematics, University of Illinois at Chicago Circle, 60680, Chicago, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Wen-Ch\u2019ing Winnie", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1137/0601002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062848626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm-3-1-19-30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091702120"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-03", 
    "datePublishedReg": "1981-03-01", 
    "description": "This article investigates the generators of certain homogeneous ideals which are associated with graphs with bounded independence numbers. These ideals first appeared in the theory oft-designs. The main theorem suggests a new approach to the Clique Problem which isNP-complete. This theorem has a more general form in commutative algebra dealing with ideals associated with unions of linear varieties. This general theorem is stated in the article; a corollary to it generalizes Tur\u00e1n\u2019s theorem on the maximum graphs with a prescribed clique number.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02579177", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136493", 
        "issn": [
          "0209-9683", 
          "1439-6912"
        ], 
        "name": "Combinatorica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Independence numbers of graphs and generators of ideals", 
    "pagination": "55-61", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "93892af8cd4b346b7528f33f499b04be1203b55e017d93b411b85629d4fb9b72"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02579177"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030969231"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02579177", 
      "https://app.dimensions.ai/details/publication/pub.1030969231"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02579177"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02579177'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02579177'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02579177'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02579177'


 

This table displays all metadata directly associated to this object as RDF triples.

72 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02579177 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nad5587eccc3c4344bfb36598ce1f4d6e
4 schema:citation https://doi.org/10.1137/0601002
5 https://doi.org/10.4064/cm-3-1-19-30
6 schema:datePublished 1981-03
7 schema:datePublishedReg 1981-03-01
8 schema:description This article investigates the generators of certain homogeneous ideals which are associated with graphs with bounded independence numbers. These ideals first appeared in the theory oft-designs. The main theorem suggests a new approach to the Clique Problem which isNP-complete. This theorem has a more general form in commutative algebra dealing with ideals associated with unions of linear varieties. This general theorem is stated in the article; a corollary to it generalizes Turán’s theorem on the maximum graphs with a prescribed clique number.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N95cb238bdabd47309ebedc3f1092c90a
13 Nceb7b42d13b44034a27799b492d199d1
14 sg:journal.1136493
15 schema:name Independence numbers of graphs and generators of ideals
16 schema:pagination 55-61
17 schema:productId N65d05dd1fc444b0f94548bb90c411302
18 N8649953bbbc54b97baa823e4d45fe8e5
19 Ne828e6dc18bf4cffacd3b91a13a26305
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030969231
21 https://doi.org/10.1007/bf02579177
22 schema:sdDatePublished 2019-04-10T13:14
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Nbb688d3d66f144d89bfb7f01abd9edf5
25 schema:url http://link.springer.com/10.1007%2FBF02579177
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N0b55e9299b094a2fa557d08a497763f7 rdf:first N351b33157178478bba04ac7ec2350d99
30 rdf:rest rdf:nil
31 N351b33157178478bba04ac7ec2350d99 schema:affiliation https://www.grid.ac/institutes/grid.185648.6
32 schema:familyName Li
33 schema:givenName Wen-Ch’ing Winnie
34 rdf:type schema:Person
35 N65d05dd1fc444b0f94548bb90c411302 schema:name doi
36 schema:value 10.1007/bf02579177
37 rdf:type schema:PropertyValue
38 N8649953bbbc54b97baa823e4d45fe8e5 schema:name readcube_id
39 schema:value 93892af8cd4b346b7528f33f499b04be1203b55e017d93b411b85629d4fb9b72
40 rdf:type schema:PropertyValue
41 N95cb238bdabd47309ebedc3f1092c90a schema:issueNumber 1
42 rdf:type schema:PublicationIssue
43 Nad5587eccc3c4344bfb36598ce1f4d6e rdf:first Nf70480ca249d4b8783f34cb2ed9c44e2
44 rdf:rest N0b55e9299b094a2fa557d08a497763f7
45 Nbb688d3d66f144d89bfb7f01abd9edf5 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Nceb7b42d13b44034a27799b492d199d1 schema:volumeNumber 1
48 rdf:type schema:PublicationVolume
49 Ne828e6dc18bf4cffacd3b91a13a26305 schema:name dimensions_id
50 schema:value pub.1030969231
51 rdf:type schema:PropertyValue
52 Nf70480ca249d4b8783f34cb2ed9c44e2 schema:affiliation https://www.grid.ac/institutes/grid.185648.6
53 schema:familyName Li
54 schema:givenName Shuo-Yen Robert
55 rdf:type schema:Person
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1136493 schema:issn 0209-9683
63 1439-6912
64 schema:name Combinatorica
65 rdf:type schema:Periodical
66 https://doi.org/10.1137/0601002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062848626
67 rdf:type schema:CreativeWork
68 https://doi.org/10.4064/cm-3-1-19-30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091702120
69 rdf:type schema:CreativeWork
70 https://www.grid.ac/institutes/grid.185648.6 schema:alternateName University of Illinois at Chicago
71 schema:name Department of Mathematics, University of Illinois at Chicago Circle, 60680, Chicago, Illinois, USA
72 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...