Independence numbers of graphs and generators of ideals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-03

AUTHORS

Shuo-Yen Robert Li, Wen-Ch’ing Winnie Li

ABSTRACT

This article investigates the generators of certain homogeneous ideals which are associated with graphs with bounded independence numbers. These ideals first appeared in the theory oft-designs. The main theorem suggests a new approach to the Clique Problem which isNP-complete. This theorem has a more general form in commutative algebra dealing with ideals associated with unions of linear varieties. This general theorem is stated in the article; a corollary to it generalizes Turán’s theorem on the maximum graphs with a prescribed clique number. More... »

PAGES

55-61

Journal

TITLE

Combinatorica

ISSUE

1

VOLUME

1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02579177

DOI

http://dx.doi.org/10.1007/bf02579177

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030969231


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Illinois at Chicago", 
          "id": "https://www.grid.ac/institutes/grid.185648.6", 
          "name": [
            "Department of Mathematics, University of Illinois at Chicago Circle, 60680, Chicago, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shuo-Yen Robert", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Illinois at Chicago", 
          "id": "https://www.grid.ac/institutes/grid.185648.6", 
          "name": [
            "Department of Mathematics, University of Illinois at Chicago Circle, 60680, Chicago, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Wen-Ch\u2019ing Winnie", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1137/0601002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062848626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm-3-1-19-30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091702120"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-03", 
    "datePublishedReg": "1981-03-01", 
    "description": "This article investigates the generators of certain homogeneous ideals which are associated with graphs with bounded independence numbers. These ideals first appeared in the theory oft-designs. The main theorem suggests a new approach to the Clique Problem which isNP-complete. This theorem has a more general form in commutative algebra dealing with ideals associated with unions of linear varieties. This general theorem is stated in the article; a corollary to it generalizes Tur\u00e1n\u2019s theorem on the maximum graphs with a prescribed clique number.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02579177", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136493", 
        "issn": [
          "0209-9683", 
          "1439-6912"
        ], 
        "name": "Combinatorica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Independence numbers of graphs and generators of ideals", 
    "pagination": "55-61", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "93892af8cd4b346b7528f33f499b04be1203b55e017d93b411b85629d4fb9b72"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02579177"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030969231"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02579177", 
      "https://app.dimensions.ai/details/publication/pub.1030969231"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02579177"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02579177'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02579177'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02579177'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02579177'


 

This table displays all metadata directly associated to this object as RDF triples.

72 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02579177 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N41b7c14ddba94cdc932ca6c3b7517285
4 schema:citation https://doi.org/10.1137/0601002
5 https://doi.org/10.4064/cm-3-1-19-30
6 schema:datePublished 1981-03
7 schema:datePublishedReg 1981-03-01
8 schema:description This article investigates the generators of certain homogeneous ideals which are associated with graphs with bounded independence numbers. These ideals first appeared in the theory oft-designs. The main theorem suggests a new approach to the Clique Problem which isNP-complete. This theorem has a more general form in commutative algebra dealing with ideals associated with unions of linear varieties. This general theorem is stated in the article; a corollary to it generalizes Turán’s theorem on the maximum graphs with a prescribed clique number.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N08fa8dcfee81485f9e4274dde57b5c40
13 Ncf687b24e5404496b06f08e822e70407
14 sg:journal.1136493
15 schema:name Independence numbers of graphs and generators of ideals
16 schema:pagination 55-61
17 schema:productId N74038e6e75644b2da0b8acbbdd31940b
18 N86a176dadc10493d8a5f90fd93ca32cf
19 N9c4a980025b2489d846047067a66d9e9
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030969231
21 https://doi.org/10.1007/bf02579177
22 schema:sdDatePublished 2019-04-10T13:14
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N51f8aec0ac14443ab6977d0587bcba35
25 schema:url http://link.springer.com/10.1007%2FBF02579177
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N08fa8dcfee81485f9e4274dde57b5c40 schema:issueNumber 1
30 rdf:type schema:PublicationIssue
31 N0bdda94102fc41d08cf353bcca9f29d1 schema:affiliation https://www.grid.ac/institutes/grid.185648.6
32 schema:familyName Li
33 schema:givenName Shuo-Yen Robert
34 rdf:type schema:Person
35 N383601e22e2c4de0ace289c048861c8f schema:affiliation https://www.grid.ac/institutes/grid.185648.6
36 schema:familyName Li
37 schema:givenName Wen-Ch’ing Winnie
38 rdf:type schema:Person
39 N41b7c14ddba94cdc932ca6c3b7517285 rdf:first N0bdda94102fc41d08cf353bcca9f29d1
40 rdf:rest Ndcdc7449145b4ac8a1429d5701cf1410
41 N51f8aec0ac14443ab6977d0587bcba35 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N74038e6e75644b2da0b8acbbdd31940b schema:name dimensions_id
44 schema:value pub.1030969231
45 rdf:type schema:PropertyValue
46 N86a176dadc10493d8a5f90fd93ca32cf schema:name readcube_id
47 schema:value 93892af8cd4b346b7528f33f499b04be1203b55e017d93b411b85629d4fb9b72
48 rdf:type schema:PropertyValue
49 N9c4a980025b2489d846047067a66d9e9 schema:name doi
50 schema:value 10.1007/bf02579177
51 rdf:type schema:PropertyValue
52 Ncf687b24e5404496b06f08e822e70407 schema:volumeNumber 1
53 rdf:type schema:PublicationVolume
54 Ndcdc7449145b4ac8a1429d5701cf1410 rdf:first N383601e22e2c4de0ace289c048861c8f
55 rdf:rest rdf:nil
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1136493 schema:issn 0209-9683
63 1439-6912
64 schema:name Combinatorica
65 rdf:type schema:Periodical
66 https://doi.org/10.1137/0601002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062848626
67 rdf:type schema:CreativeWork
68 https://doi.org/10.4064/cm-3-1-19-30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091702120
69 rdf:type schema:CreativeWork
70 https://www.grid.ac/institutes/grid.185648.6 schema:alternateName University of Illinois at Chicago
71 schema:name Department of Mathematics, University of Illinois at Chicago Circle, 60680, Chicago, Illinois, USA
72 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...