Ontology type: schema:ScholarlyArticle
1984-12
AUTHORS ABSTRACTWe present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requiresO(n3.5L) arithmetic operations onO(L) bit numbers, wheren is the number of variables andL is the number of bits in the input. The running-time of this algorithm is better than the ellipsoid algorithm by a factor ofO(n2.5). We prove that given a polytopeP and a strictly interior point a εP, there is a projective transformation of the space that mapsP, a toP′, a′ having the following property. The ratio of the radius of the smallest sphere with center a′, containingP′ to the radius of the largest sphere with center a′ contained inP′ isO(n). The algorithm consists of repeated application of such projective transformations each followed by optimization over an inscribed sphere to create a sequence of points which converges to the optimal solution in polynomial time. More... »
PAGES373-395
http://scigraph.springernature.com/pub.10.1007/bf02579150
DOIhttp://dx.doi.org/10.1007/bf02579150
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1035950209
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "AT&T Bell Laboratories, 07974, Murray Hill, NJ, U.S.A.",
"id": "http://www.grid.ac/institutes/grid.469490.6",
"name": [
"AT&T Bell Laboratories, 07974, Murray Hill, NJ, U.S.A."
],
"type": "Organization"
},
"familyName": "Karmarkar",
"givenName": "N.",
"id": "sg:person.012767743421.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012767743421.72"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02579273",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010850152",
"https://doi.org/10.1007/bf02579273"
],
"type": "CreativeWork"
}
],
"datePublished": "1984-12",
"datePublishedReg": "1984-12-01",
"description": "We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requiresO(n3.5L) arithmetic operations onO(L) bit numbers, wheren is the number of variables andL is the number of bits in the input. The running-time of this algorithm is better than the ellipsoid algorithm by a factor ofO(n2.5). We prove that given a polytopeP and a strictly interior point a \u03b5P, there is a projective transformation of the space that mapsP, a toP\u2032, a\u2032 having the following property. The ratio of the radius of the smallest sphere with center a\u2032, containingP\u2032 to the radius of the largest sphere with center a\u2032 contained inP\u2032 isO(n). The algorithm consists of repeated application of such projective transformations each followed by optimization over an inscribed sphere to create a sequence of points which converges to the optimal solution in polynomial time.",
"genre": "article",
"id": "sg:pub.10.1007/bf02579150",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136493",
"issn": [
"0209-9683",
"1439-6912"
],
"name": "Combinatorica",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "4"
}
],
"keywords": [
"new polynomial time algorithm",
"polynomial time algorithm",
"linear programming",
"projective transformation",
"sequence of points",
"ellipsoid algorithm",
"number of variables",
"interior point",
"optimal solution",
"polynomial time",
"arithmetic operations",
"algorithm",
"small spheres",
"number of bits",
"worst case",
"large spheres",
"programming",
"converges",
"wheren",
"polytopeP",
"radius",
"bit number",
"optimization",
"sphere",
"space",
"point",
"solution",
"number",
"transformation",
"variables",
"properties",
"input",
"applications",
"operation",
"bits",
"cases",
"\u03b5p",
"time",
"center",
"sequence",
"ratio",
"factors"
],
"name": "A new polynomial-time algorithm for linear programming",
"pagination": "373-395",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1035950209"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02579150"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02579150",
"https://app.dimensions.ai/details/publication/pub.1035950209"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_169.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf02579150"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02579150'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02579150'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02579150'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02579150'
This table displays all metadata directly associated to this object as RDF triples.
103 TRIPLES
21 PREDICATES
68 URIs
59 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf02579150 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | N94bcb83205744d2abfa0dcd593d346fd |
4 | ″ | schema:citation | sg:pub.10.1007/bf02579273 |
5 | ″ | schema:datePublished | 1984-12 |
6 | ″ | schema:datePublishedReg | 1984-12-01 |
7 | ″ | schema:description | We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requiresO(n3.5L) arithmetic operations onO(L) bit numbers, wheren is the number of variables andL is the number of bits in the input. The running-time of this algorithm is better than the ellipsoid algorithm by a factor ofO(n2.5). We prove that given a polytopeP and a strictly interior point a εP, there is a projective transformation of the space that mapsP, a toP′, a′ having the following property. The ratio of the radius of the smallest sphere with center a′, containingP′ to the radius of the largest sphere with center a′ contained inP′ isO(n). The algorithm consists of repeated application of such projective transformations each followed by optimization over an inscribed sphere to create a sequence of points which converges to the optimal solution in polynomial time. |
8 | ″ | schema:genre | article |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | Nacc6c041765d45828972be4c979dd742 |
11 | ″ | ″ | Nce3a7d199eea4b11bbdff0c3013c791f |
12 | ″ | ″ | sg:journal.1136493 |
13 | ″ | schema:keywords | algorithm |
14 | ″ | ″ | applications |
15 | ″ | ″ | arithmetic operations |
16 | ″ | ″ | bit number |
17 | ″ | ″ | bits |
18 | ″ | ″ | cases |
19 | ″ | ″ | center |
20 | ″ | ″ | converges |
21 | ″ | ″ | ellipsoid algorithm |
22 | ″ | ″ | factors |
23 | ″ | ″ | input |
24 | ″ | ″ | interior point |
25 | ″ | ″ | large spheres |
26 | ″ | ″ | linear programming |
27 | ″ | ″ | new polynomial time algorithm |
28 | ″ | ″ | number |
29 | ″ | ″ | number of bits |
30 | ″ | ″ | number of variables |
31 | ″ | ″ | operation |
32 | ″ | ″ | optimal solution |
33 | ″ | ″ | optimization |
34 | ″ | ″ | point |
35 | ″ | ″ | polynomial time |
36 | ″ | ″ | polynomial time algorithm |
37 | ″ | ″ | polytopeP |
38 | ″ | ″ | programming |
39 | ″ | ″ | projective transformation |
40 | ″ | ″ | properties |
41 | ″ | ″ | radius |
42 | ″ | ″ | ratio |
43 | ″ | ″ | sequence |
44 | ″ | ″ | sequence of points |
45 | ″ | ″ | small spheres |
46 | ″ | ″ | solution |
47 | ″ | ″ | space |
48 | ″ | ″ | sphere |
49 | ″ | ″ | time |
50 | ″ | ″ | transformation |
51 | ″ | ″ | variables |
52 | ″ | ″ | wheren |
53 | ″ | ″ | worst case |
54 | ″ | ″ | εp |
55 | ″ | schema:name | A new polynomial-time algorithm for linear programming |
56 | ″ | schema:pagination | 373-395 |
57 | ″ | schema:productId | N48334557a95f485e9f6a8cff622dd7ce |
58 | ″ | ″ | Ndc2d5ebeab8b4a5e8335f5042e2ef08d |
59 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035950209 |
60 | ″ | ″ | https://doi.org/10.1007/bf02579150 |
61 | ″ | schema:sdDatePublished | 2022-08-04T16:49 |
62 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
63 | ″ | schema:sdPublisher | N6bc774b1eb1047dba5a5f2c675521d21 |
64 | ″ | schema:url | https://doi.org/10.1007/bf02579150 |
65 | ″ | sgo:license | sg:explorer/license/ |
66 | ″ | sgo:sdDataset | articles |
67 | ″ | rdf:type | schema:ScholarlyArticle |
68 | N48334557a95f485e9f6a8cff622dd7ce | schema:name | dimensions_id |
69 | ″ | schema:value | pub.1035950209 |
70 | ″ | rdf:type | schema:PropertyValue |
71 | N6bc774b1eb1047dba5a5f2c675521d21 | schema:name | Springer Nature - SN SciGraph project |
72 | ″ | rdf:type | schema:Organization |
73 | N94bcb83205744d2abfa0dcd593d346fd | rdf:first | sg:person.012767743421.72 |
74 | ″ | rdf:rest | rdf:nil |
75 | Nacc6c041765d45828972be4c979dd742 | schema:volumeNumber | 4 |
76 | ″ | rdf:type | schema:PublicationVolume |
77 | Nce3a7d199eea4b11bbdff0c3013c791f | schema:issueNumber | 4 |
78 | ″ | rdf:type | schema:PublicationIssue |
79 | Ndc2d5ebeab8b4a5e8335f5042e2ef08d | schema:name | doi |
80 | ″ | schema:value | 10.1007/bf02579150 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
83 | ″ | schema:name | Mathematical Sciences |
84 | ″ | rdf:type | schema:DefinedTerm |
85 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
86 | ″ | schema:name | Applied Mathematics |
87 | ″ | rdf:type | schema:DefinedTerm |
88 | sg:journal.1136493 | schema:issn | 0209-9683 |
89 | ″ | ″ | 1439-6912 |
90 | ″ | schema:name | Combinatorica |
91 | ″ | schema:publisher | Springer Nature |
92 | ″ | rdf:type | schema:Periodical |
93 | sg:person.012767743421.72 | schema:affiliation | grid-institutes:grid.469490.6 |
94 | ″ | schema:familyName | Karmarkar |
95 | ″ | schema:givenName | N. |
96 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012767743421.72 |
97 | ″ | rdf:type | schema:Person |
98 | sg:pub.10.1007/bf02579273 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010850152 |
99 | ″ | ″ | https://doi.org/10.1007/bf02579273 |
100 | ″ | rdf:type | schema:CreativeWork |
101 | grid-institutes:grid.469490.6 | schema:alternateName | AT&T Bell Laboratories, 07974, Murray Hill, NJ, U.S.A. |
102 | ″ | schema:name | AT&T Bell Laboratories, 07974, Murray Hill, NJ, U.S.A. |
103 | ″ | rdf:type | schema:Organization |