A note on the derivation of maximal common subgraphs of two directed or undirected graphs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1973-12

AUTHORS

G. Levi

ABSTRACT

In this note the problem is considered of finding maximal common subgraphs of two given graphs. A technique is described by which this problem can be stated as a problem of deriving maximal compatibility classes. A known «maximal compatibility classes» algorithm can then be used to derive maximal common subgraphs. The same technique is shown to apply to the classical subgraph isomorphism problem. More... »

PAGES

341

Journal

TITLE

Calcolo

ISSUE

4

VOLUME

9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02575586

DOI

http://dx.doi.org/10.1007/bf02575586

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041808659


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Istituto di Elaborazione della Informazione del C.N.R., Via S. Maria 46, 56100, Pisa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levi", 
        "givenName": "G.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/321556.321562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003980246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008104664", 
          "https://doi.org/10.1007/bf02575691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008104664", 
          "https://doi.org/10.1007/bf02575691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/363872.363899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015364039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016989261", 
          "https://doi.org/10.1007/bf02575571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02576017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028266626", 
          "https://doi.org/10.1007/bf02576017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028788771", 
          "https://doi.org/10.1007/bf02575800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028788771", 
          "https://doi.org/10.1007/bf02575800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0255(73)90001-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040198903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0255(73)90001-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040198903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041824780", 
          "https://doi.org/10.1007/bf02575573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/c160016a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055225028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tec.1959.5222697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061588198"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1973-12", 
    "datePublishedReg": "1973-12-01", 
    "description": "In this note the problem is considered of finding maximal common subgraphs of two given graphs. A technique is described by which this problem can be stated as a problem of deriving maximal compatibility classes. A known \u00abmaximal compatibility classes\u00bb algorithm can then be used to derive maximal common subgraphs. The same technique is shown to apply to the classical subgraph isomorphism problem.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02575586", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135974", 
        "issn": [
          "0008-0624", 
          "1126-5434"
        ], 
        "name": "Calcolo", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "A note on the derivation of maximal common subgraphs of two directed or undirected graphs", 
    "pagination": "341", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c7288eee3fde18850f00f08c910fe6e59e6cf167eaa5b7578f85e6eab86780f5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02575586"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041808659"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02575586", 
      "https://app.dimensions.ai/details/publication/pub.1041808659"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02575586"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02575586'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02575586'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02575586'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02575586'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02575586 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N997c7bdac34a4e63bc8934e8be6c62a3
4 schema:citation sg:pub.10.1007/bf02575571
5 sg:pub.10.1007/bf02575573
6 sg:pub.10.1007/bf02575691
7 sg:pub.10.1007/bf02575800
8 sg:pub.10.1007/bf02576017
9 https://doi.org/10.1016/0020-0255(73)90001-7
10 https://doi.org/10.1021/c160016a007
11 https://doi.org/10.1109/tec.1959.5222697
12 https://doi.org/10.1145/321556.321562
13 https://doi.org/10.1145/363872.363899
14 schema:datePublished 1973-12
15 schema:datePublishedReg 1973-12-01
16 schema:description In this note the problem is considered of finding maximal common subgraphs of two given graphs. A technique is described by which this problem can be stated as a problem of deriving maximal compatibility classes. A known «maximal compatibility classes» algorithm can then be used to derive maximal common subgraphs. The same technique is shown to apply to the classical subgraph isomorphism problem.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nf7f1e7a2f3ce4cbf9d8a87cb1cf91f7a
21 Nfcb98cda0f444471824dcbc5baafba7e
22 sg:journal.1135974
23 schema:name A note on the derivation of maximal common subgraphs of two directed or undirected graphs
24 schema:pagination 341
25 schema:productId N0d832bdd73614917ab68b4fee13a1c2f
26 N82347c7b63a04f54a732e15618db9e8b
27 Nf2055b5ca7e344a69ebe2c8d8115c4bb
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041808659
29 https://doi.org/10.1007/bf02575586
30 schema:sdDatePublished 2019-04-11T13:36
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N645873b24a534925bc14a172761daff1
33 schema:url http://link.springer.com/10.1007%2FBF02575586
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0d832bdd73614917ab68b4fee13a1c2f schema:name readcube_id
38 schema:value c7288eee3fde18850f00f08c910fe6e59e6cf167eaa5b7578f85e6eab86780f5
39 rdf:type schema:PropertyValue
40 N645873b24a534925bc14a172761daff1 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N82347c7b63a04f54a732e15618db9e8b schema:name doi
43 schema:value 10.1007/bf02575586
44 rdf:type schema:PropertyValue
45 N997c7bdac34a4e63bc8934e8be6c62a3 rdf:first Necc1dbcf7bc14dc18a76931025cacee8
46 rdf:rest rdf:nil
47 Nc69c8a8a4b424c2cbc4f469ffbc2679a schema:name Istituto di Elaborazione della Informazione del C.N.R., Via S. Maria 46, 56100, Pisa
48 rdf:type schema:Organization
49 Necc1dbcf7bc14dc18a76931025cacee8 schema:affiliation Nc69c8a8a4b424c2cbc4f469ffbc2679a
50 schema:familyName Levi
51 schema:givenName G.
52 rdf:type schema:Person
53 Nf2055b5ca7e344a69ebe2c8d8115c4bb schema:name dimensions_id
54 schema:value pub.1041808659
55 rdf:type schema:PropertyValue
56 Nf7f1e7a2f3ce4cbf9d8a87cb1cf91f7a schema:volumeNumber 9
57 rdf:type schema:PublicationVolume
58 Nfcb98cda0f444471824dcbc5baafba7e schema:issueNumber 4
59 rdf:type schema:PublicationIssue
60 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
61 schema:name Medical and Health Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
64 schema:name Clinical Sciences
65 rdf:type schema:DefinedTerm
66 sg:journal.1135974 schema:issn 0008-0624
67 1126-5434
68 schema:name Calcolo
69 rdf:type schema:Periodical
70 sg:pub.10.1007/bf02575571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016989261
71 https://doi.org/10.1007/bf02575571
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf02575573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041824780
74 https://doi.org/10.1007/bf02575573
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf02575691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008104664
77 https://doi.org/10.1007/bf02575691
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf02575800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028788771
80 https://doi.org/10.1007/bf02575800
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf02576017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028266626
83 https://doi.org/10.1007/bf02576017
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0020-0255(73)90001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040198903
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1021/c160016a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055225028
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/tec.1959.5222697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061588198
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1145/321556.321562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003980246
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1145/363872.363899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015364039
94 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...