Ontology type: schema:ScholarlyArticle
1973-12
AUTHORSG. Levi
ABSTRACTIn this note the problem is considered of finding maximal common subgraphs of two given graphs. A technique is described by which this problem can be stated as a problem of deriving maximal compatibility classes. A known «maximal compatibility classes» algorithm can then be used to derive maximal common subgraphs. The same technique is shown to apply to the classical subgraph isomorphism problem. More... »
PAGES341
http://scigraph.springernature.com/pub.10.1007/bf02575586
DOIhttp://dx.doi.org/10.1007/bf02575586
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1041808659
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Clinical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Istituto di Elaborazione della Informazione del C.N.R., Via S. Maria 46, 56100, Pisa"
],
"type": "Organization"
},
"familyName": "Levi",
"givenName": "G.",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1145/321556.321562",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003980246"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02575691",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008104664",
"https://doi.org/10.1007/bf02575691"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02575691",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008104664",
"https://doi.org/10.1007/bf02575691"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/363872.363899",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015364039"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02575571",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016989261",
"https://doi.org/10.1007/bf02575571"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02576017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028266626",
"https://doi.org/10.1007/bf02576017"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02575800",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028788771",
"https://doi.org/10.1007/bf02575800"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02575800",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028788771",
"https://doi.org/10.1007/bf02575800"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0020-0255(73)90001-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040198903"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0020-0255(73)90001-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040198903"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02575573",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041824780",
"https://doi.org/10.1007/bf02575573"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/c160016a007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055225028"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tec.1959.5222697",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061588198"
],
"type": "CreativeWork"
}
],
"datePublished": "1973-12",
"datePublishedReg": "1973-12-01",
"description": "In this note the problem is considered of finding maximal common subgraphs of two given graphs. A technique is described by which this problem can be stated as a problem of deriving maximal compatibility classes. A known \u00abmaximal compatibility classes\u00bb algorithm can then be used to derive maximal common subgraphs. The same technique is shown to apply to the classical subgraph isomorphism problem.",
"genre": "research_article",
"id": "sg:pub.10.1007/bf02575586",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1135974",
"issn": [
"0008-0624",
"1126-5434"
],
"name": "Calcolo",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"name": "A note on the derivation of maximal common subgraphs of two directed or undirected graphs",
"pagination": "341",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"c7288eee3fde18850f00f08c910fe6e59e6cf167eaa5b7578f85e6eab86780f5"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02575586"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1041808659"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02575586",
"https://app.dimensions.ai/details/publication/pub.1041808659"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T13:36",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000002.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2FBF02575586"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02575586'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02575586'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02575586'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02575586'
This table displays all metadata directly associated to this object as RDF triples.
94 TRIPLES
21 PREDICATES
37 URIs
19 LITERALS
7 BLANK NODES