Matching of transducers to resonant gravitational-wave antennas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-05

AUTHORS

G. V. Pallottino, G. Pizzella

ABSTRACT

We present here a detailed analysis of the signal and noise response of a resonant gravitational-wave antenna in two cases:a) with the transducer mounted directly on the bar,b) with the transducer mounted on an auxiliary resonant mechanical oscillator which, in turn, is connected to the bar. The sensitivity, minimum detectable spectralenergy density of the gravitational radiation, is given in terms of the ratio between an effective temperature and the antenna mass. The effective temperature depends on the temperature of the bar, on the noise temperature of the transducer, on the matching among bar, transducer and preamplifier, and on the data analysis algorithm. We derive an expression for the optimum matching conditions which holds for both casesa) andb). When the matching conditions are fulfilled, the effective temperature becomes equal to twice the noise temperature of the amplifier, provided the Wiener-Kolmogoroff algorithm is used in the data analysis. More... »

PAGES

237-283

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02574720

DOI

http://dx.doi.org/10.1007/bf02574720

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030975888


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Roma, Italia", 
          "id": "http://www.grid.ac/institutes/grid.6045.7", 
          "name": [
            "Istituto Plasma Spazio, CNR, Frascati (Roma)", 
            "Istituto di Fisica dell' Universit\u00e0, Roma", 
            "Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Roma, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pallottino", 
        "givenName": "G. V.", 
        "id": "sg:person.016503762715.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016503762715.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Roma, Italia", 
          "id": "http://www.grid.ac/institutes/grid.6045.7", 
          "name": [
            "Istituto Plasma Spazio, CNR, Frascati (Roma)", 
            "Istituto di Fisica dell' Universit\u00e0, Roma", 
            "Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Roma, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pizzella", 
        "givenName": "G.", 
        "id": "sg:person.016536750112.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536750112.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02510106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012917492", 
          "https://doi.org/10.1007/bf02510106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02508232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027836223", 
          "https://doi.org/10.1007/bf02508232"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-05", 
    "datePublishedReg": "1981-05-01", 
    "description": "We present here a detailed analysis of the signal and noise response of a resonant gravitational-wave antenna in two cases:a) with the transducer mounted directly on the bar,b) with the transducer mounted on an auxiliary resonant mechanical oscillator which, in turn, is connected to the bar. The sensitivity, minimum detectable spectralenergy density of the gravitational radiation, is given in terms of the ratio between an effective temperature and the antenna mass. The effective temperature depends on the temperature of the bar, on the noise temperature of the transducer, on the matching among bar, transducer and preamplifier, and on the data analysis algorithm. We derive an expression for the optimum matching conditions which holds for both casesa) andb). When the matching conditions are fulfilled, the effective temperature becomes equal to twice the noise temperature of the amplifier, provided the Wiener-Kolmogoroff algorithm is used in the data analysis.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02574720", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1358836", 
        "issn": [
          "1124-1896", 
          "1826-9885"
        ], 
        "name": "Il Nuovo Cimento C", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "noise temperature", 
      "optimum matching condition", 
      "gravitational-wave antenna", 
      "matching condition", 
      "noise response", 
      "bar", 
      "antenna mass", 
      "transducer", 
      "temperature", 
      "mechanical oscillator", 
      "effective temperature", 
      "data analysis algorithms", 
      "antenna", 
      "amplifier", 
      "conditions", 
      "detailed analysis", 
      "analysis algorithm", 
      "density", 
      "algorithm", 
      "signals", 
      "ratio", 
      "radiation", 
      "analysis", 
      "oscillator", 
      "terms", 
      "matching", 
      "mass", 
      "sensitivity", 
      "turn", 
      "data analysis", 
      "cases", 
      "response", 
      "gravitational radiation", 
      "andb", 
      "expression", 
      "resonant gravitational-wave antenna", 
      "auxiliary resonant mechanical oscillator", 
      "resonant mechanical oscillator", 
      "minimum detectable spectralenergy density", 
      "detectable spectralenergy density", 
      "spectralenergy density", 
      "casesa", 
      "Wiener-Kolmogoroff algorithm"
    ], 
    "name": "Matching of transducers to resonant gravitational-wave antennas", 
    "pagination": "237-283", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030975888"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02574720"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02574720", 
      "https://app.dimensions.ai/details/publication/pub.1030975888"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_168.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02574720"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02574720'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02574720'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02574720'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02574720'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      22 PREDICATES      71 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02574720 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author Ndb8a804d67c44c2d811bf3d7129bf75f
4 schema:citation sg:pub.10.1007/bf02508232
5 sg:pub.10.1007/bf02510106
6 schema:datePublished 1981-05
7 schema:datePublishedReg 1981-05-01
8 schema:description We present here a detailed analysis of the signal and noise response of a resonant gravitational-wave antenna in two cases:a) with the transducer mounted directly on the bar,b) with the transducer mounted on an auxiliary resonant mechanical oscillator which, in turn, is connected to the bar. The sensitivity, minimum detectable spectralenergy density of the gravitational radiation, is given in terms of the ratio between an effective temperature and the antenna mass. The effective temperature depends on the temperature of the bar, on the noise temperature of the transducer, on the matching among bar, transducer and preamplifier, and on the data analysis algorithm. We derive an expression for the optimum matching conditions which holds for both casesa) andb). When the matching conditions are fulfilled, the effective temperature becomes equal to twice the noise temperature of the amplifier, provided the Wiener-Kolmogoroff algorithm is used in the data analysis.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N0d90f96193c647668daa86d14d937759
13 N4ce0949aac4849a68f30b6041b9f2763
14 sg:journal.1358836
15 schema:keywords Wiener-Kolmogoroff algorithm
16 algorithm
17 amplifier
18 analysis
19 analysis algorithm
20 andb
21 antenna
22 antenna mass
23 auxiliary resonant mechanical oscillator
24 bar
25 cases
26 casesa
27 conditions
28 data analysis
29 data analysis algorithms
30 density
31 detailed analysis
32 detectable spectralenergy density
33 effective temperature
34 expression
35 gravitational radiation
36 gravitational-wave antenna
37 mass
38 matching
39 matching condition
40 mechanical oscillator
41 minimum detectable spectralenergy density
42 noise response
43 noise temperature
44 optimum matching condition
45 oscillator
46 radiation
47 ratio
48 resonant gravitational-wave antenna
49 resonant mechanical oscillator
50 response
51 sensitivity
52 signals
53 spectralenergy density
54 temperature
55 terms
56 transducer
57 turn
58 schema:name Matching of transducers to resonant gravitational-wave antennas
59 schema:pagination 237-283
60 schema:productId N3a87dd742c7c41cc93c55c262438ab56
61 N9e810aa8dddf48878f2018c6bc0a0670
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030975888
63 https://doi.org/10.1007/bf02574720
64 schema:sdDatePublished 2021-11-01T17:56
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N5684c42f66bf4624997ba0ef38808180
67 schema:url https://doi.org/10.1007/bf02574720
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0d90f96193c647668daa86d14d937759 schema:issueNumber 3
72 rdf:type schema:PublicationIssue
73 N3a87dd742c7c41cc93c55c262438ab56 schema:name doi
74 schema:value 10.1007/bf02574720
75 rdf:type schema:PropertyValue
76 N4ce0949aac4849a68f30b6041b9f2763 schema:volumeNumber 4
77 rdf:type schema:PublicationVolume
78 N5684c42f66bf4624997ba0ef38808180 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N8a7e6474616f4331b47dde2008d7de39 rdf:first sg:person.016536750112.16
81 rdf:rest rdf:nil
82 N9e810aa8dddf48878f2018c6bc0a0670 schema:name dimensions_id
83 schema:value pub.1030975888
84 rdf:type schema:PropertyValue
85 Ndb8a804d67c44c2d811bf3d7129bf75f rdf:first sg:person.016503762715.72
86 rdf:rest N8a7e6474616f4331b47dde2008d7de39
87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
88 schema:name Engineering
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
91 schema:name Electrical and Electronic Engineering
92 rdf:type schema:DefinedTerm
93 sg:journal.1358836 schema:issn 1124-1896
94 1826-9885
95 schema:name Il Nuovo Cimento C
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.016503762715.72 schema:affiliation grid-institutes:grid.6045.7
99 schema:familyName Pallottino
100 schema:givenName G. V.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016503762715.72
102 rdf:type schema:Person
103 sg:person.016536750112.16 schema:affiliation grid-institutes:grid.6045.7
104 schema:familyName Pizzella
105 schema:givenName G.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536750112.16
107 rdf:type schema:Person
108 sg:pub.10.1007/bf02508232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027836223
109 https://doi.org/10.1007/bf02508232
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf02510106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012917492
112 https://doi.org/10.1007/bf02510106
113 rdf:type schema:CreativeWork
114 grid-institutes:grid.6045.7 schema:alternateName Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Roma, Italia
115 schema:name Istituto Plasma Spazio, CNR, Frascati (Roma)
116 Istituto di Fisica dell' Università, Roma
117 Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Roma, Italia
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...