Generalized dirichlet problem in nonlinear potential theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-12

AUTHORS

Tero Kilpeläinen, Jan Malý

ABSTRACT

The operator extending the classical solution of the Dirichlet problem for the quasilinear elliptic equation divA(x,▽u)=0 akin to thep-Laplace equation is shown to be unique providedA obeys a specific order principle. The Keldych lemma is also generalized to this nonlinear setting.

PAGES

25-44

Journal

TITLE

manuscripta mathematica

ISSUE

1

VOLUME

66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02568480

DOI

http://dx.doi.org/10.1007/bf02568480

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032889808


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Jyv\u00e4skyl\u00e4", 
          "id": "https://www.grid.ac/institutes/grid.9681.6", 
          "name": [
            "Department of Mathematics, University of Jyv\u00e4skyl\u00e4, Seminaarinkatu 15, 40100, Jyv\u00e4skyl\u00e4, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kilpel\u00e4inen", 
        "givenName": "Tero", 
        "id": "sg:person.011161247457.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charles University", 
          "id": "https://www.grid.ac/institutes/grid.4491.8", 
          "name": [
            "Matematicko-fyzyk\u00e1ln\u00ed fakulta, University Karlovy, Sokolovsk\u00e1 83, 186 00, Praha 8, Czechoslovakia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mal\u00fd", 
        "givenName": "Jan", 
        "id": "sg:person.016026347345.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01390188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003418178", 
          "https://doi.org/10.1007/bf01390188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1988-0965751-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013424813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019757244", 
          "https://doi.org/10.1007/bf02392541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02786852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043114345", 
          "https://doi.org/10.1007/bf02786852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02386110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046491329", 
          "https://doi.org/10.1007/bf02386110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02386110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046491329", 
          "https://doi.org/10.1007/bf02386110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1983-0690040-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050552716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.1973.22.22013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067511379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1986.125.381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069069159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.1168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073136818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7146/math.scand.a-12229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073614034"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-12", 
    "datePublishedReg": "1990-12-01", 
    "description": "The operator extending the classical solution of the Dirichlet problem for the quasilinear elliptic equation divA(x,\u25bdu)=0 akin to thep-Laplace equation is shown to be unique providedA obeys a specific order principle. The Keldych lemma is also generalized to this nonlinear setting.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02568480", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136220", 
        "issn": [
          "0025-2611", 
          "1432-1785"
        ], 
        "name": "manuscripta mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "66"
      }
    ], 
    "name": "Generalized dirichlet problem in nonlinear potential theory", 
    "pagination": "25-44", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9caf0d97bda99846bc288deea74278dd2b5be10604b8a992a64b8f202aebd854"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02568480"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032889808"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02568480", 
      "https://app.dimensions.ai/details/publication/pub.1032889808"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02568480"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02568480'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02568480'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02568480'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02568480'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      20 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02568480 schema:author N03a7143776574fa6a2c0a771b5e9ff00
2 schema:citation sg:pub.10.1007/bf01390188
3 sg:pub.10.1007/bf02386110
4 sg:pub.10.1007/bf02392541
5 sg:pub.10.1007/bf02786852
6 https://doi.org/10.1090/s0002-9947-1983-0690040-4
7 https://doi.org/10.1090/s0002-9947-1988-0965751-8
8 https://doi.org/10.1512/iumj.1973.22.22013
9 https://doi.org/10.2140/pjm.1986.125.381
10 https://doi.org/10.5802/aif.1168
11 https://doi.org/10.7146/math.scand.a-12229
12 schema:datePublished 1990-12
13 schema:datePublishedReg 1990-12-01
14 schema:description The operator extending the classical solution of the Dirichlet problem for the quasilinear elliptic equation divA(x,▽u)=0 akin to thep-Laplace equation is shown to be unique providedA obeys a specific order principle. The Keldych lemma is also generalized to this nonlinear setting.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N552981f3f2d345908901c762687d3698
19 N7419cbbbfc9044ae84c0aad31ca4192d
20 sg:journal.1136220
21 schema:name Generalized dirichlet problem in nonlinear potential theory
22 schema:pagination 25-44
23 schema:productId N6b0c38be553a40959d11f0eb5e3629f9
24 N6e22c6bb51514417a00dd9a272dc7c01
25 Nfa818e0c845848cda11eb7db8cac0575
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032889808
27 https://doi.org/10.1007/bf02568480
28 schema:sdDatePublished 2019-04-11T13:32
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N6edac7abbcb640c68f4e4a014d779db1
31 schema:url http://link.springer.com/10.1007%2FBF02568480
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N03a7143776574fa6a2c0a771b5e9ff00 rdf:first sg:person.011161247457.34
36 rdf:rest N749c7ae1391a4cac9e329842d690c114
37 N552981f3f2d345908901c762687d3698 schema:issueNumber 1
38 rdf:type schema:PublicationIssue
39 N6b0c38be553a40959d11f0eb5e3629f9 schema:name dimensions_id
40 schema:value pub.1032889808
41 rdf:type schema:PropertyValue
42 N6e22c6bb51514417a00dd9a272dc7c01 schema:name readcube_id
43 schema:value 9caf0d97bda99846bc288deea74278dd2b5be10604b8a992a64b8f202aebd854
44 rdf:type schema:PropertyValue
45 N6edac7abbcb640c68f4e4a014d779db1 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N7419cbbbfc9044ae84c0aad31ca4192d schema:volumeNumber 66
48 rdf:type schema:PublicationVolume
49 N749c7ae1391a4cac9e329842d690c114 rdf:first sg:person.016026347345.35
50 rdf:rest rdf:nil
51 Nfa818e0c845848cda11eb7db8cac0575 schema:name doi
52 schema:value 10.1007/bf02568480
53 rdf:type schema:PropertyValue
54 sg:journal.1136220 schema:issn 0025-2611
55 1432-1785
56 schema:name manuscripta mathematica
57 rdf:type schema:Periodical
58 sg:person.011161247457.34 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
59 schema:familyName Kilpeläinen
60 schema:givenName Tero
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34
62 rdf:type schema:Person
63 sg:person.016026347345.35 schema:affiliation https://www.grid.ac/institutes/grid.4491.8
64 schema:familyName Malý
65 schema:givenName Jan
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35
67 rdf:type schema:Person
68 sg:pub.10.1007/bf01390188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003418178
69 https://doi.org/10.1007/bf01390188
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/bf02386110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046491329
72 https://doi.org/10.1007/bf02386110
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf02392541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019757244
75 https://doi.org/10.1007/bf02392541
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02786852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043114345
78 https://doi.org/10.1007/bf02786852
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1090/s0002-9947-1983-0690040-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050552716
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1090/s0002-9947-1988-0965751-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013424813
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1512/iumj.1973.22.22013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067511379
85 rdf:type schema:CreativeWork
86 https://doi.org/10.2140/pjm.1986.125.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069069159
87 rdf:type schema:CreativeWork
88 https://doi.org/10.5802/aif.1168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073136818
89 rdf:type schema:CreativeWork
90 https://doi.org/10.7146/math.scand.a-12229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073614034
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.4491.8 schema:alternateName Charles University
93 schema:name Matematicko-fyzykální fakulta, University Karlovy, Sokolovská 83, 186 00, Praha 8, Czechoslovakia
94 rdf:type schema:Organization
95 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
96 schema:name Department of Mathematics, University of Jyväskylä, Seminaarinkatu 15, 40100, Jyväskylä, Finland
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...