Generalized dirichlet problem in nonlinear potential theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-12

AUTHORS

Tero Kilpeläinen, Jan Malý

ABSTRACT

The operator extending the classical solution of the Dirichlet problem for the quasilinear elliptic equation divA(x,▽u)=0 akin to thep-Laplace equation is shown to be unique providedA obeys a specific order principle. The Keldych lemma is also generalized to this nonlinear setting.

PAGES

25-44

Journal

TITLE

manuscripta mathematica

ISSUE

1

VOLUME

66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02568480

DOI

http://dx.doi.org/10.1007/bf02568480

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032889808


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Jyv\u00e4skyl\u00e4", 
          "id": "https://www.grid.ac/institutes/grid.9681.6", 
          "name": [
            "Department of Mathematics, University of Jyv\u00e4skyl\u00e4, Seminaarinkatu 15, 40100, Jyv\u00e4skyl\u00e4, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kilpel\u00e4inen", 
        "givenName": "Tero", 
        "id": "sg:person.011161247457.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charles University", 
          "id": "https://www.grid.ac/institutes/grid.4491.8", 
          "name": [
            "Matematicko-fyzyk\u00e1ln\u00ed fakulta, University Karlovy, Sokolovsk\u00e1 83, 186 00, Praha 8, Czechoslovakia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mal\u00fd", 
        "givenName": "Jan", 
        "id": "sg:person.016026347345.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01390188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003418178", 
          "https://doi.org/10.1007/bf01390188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1988-0965751-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013424813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019757244", 
          "https://doi.org/10.1007/bf02392541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02786852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043114345", 
          "https://doi.org/10.1007/bf02786852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02386110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046491329", 
          "https://doi.org/10.1007/bf02386110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02386110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046491329", 
          "https://doi.org/10.1007/bf02386110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1983-0690040-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050552716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.1973.22.22013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067511379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1986.125.381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069069159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.1168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073136818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7146/math.scand.a-12229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073614034"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-12", 
    "datePublishedReg": "1990-12-01", 
    "description": "The operator extending the classical solution of the Dirichlet problem for the quasilinear elliptic equation divA(x,\u25bdu)=0 akin to thep-Laplace equation is shown to be unique providedA obeys a specific order principle. The Keldych lemma is also generalized to this nonlinear setting.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02568480", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136220", 
        "issn": [
          "0025-2611", 
          "1432-1785"
        ], 
        "name": "manuscripta mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "66"
      }
    ], 
    "name": "Generalized dirichlet problem in nonlinear potential theory", 
    "pagination": "25-44", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9caf0d97bda99846bc288deea74278dd2b5be10604b8a992a64b8f202aebd854"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02568480"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032889808"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02568480", 
      "https://app.dimensions.ai/details/publication/pub.1032889808"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02568480"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02568480'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02568480'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02568480'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02568480'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      20 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02568480 schema:author Ncc99dc442b8b42f79704c40b4f6f2d2e
2 schema:citation sg:pub.10.1007/bf01390188
3 sg:pub.10.1007/bf02386110
4 sg:pub.10.1007/bf02392541
5 sg:pub.10.1007/bf02786852
6 https://doi.org/10.1090/s0002-9947-1983-0690040-4
7 https://doi.org/10.1090/s0002-9947-1988-0965751-8
8 https://doi.org/10.1512/iumj.1973.22.22013
9 https://doi.org/10.2140/pjm.1986.125.381
10 https://doi.org/10.5802/aif.1168
11 https://doi.org/10.7146/math.scand.a-12229
12 schema:datePublished 1990-12
13 schema:datePublishedReg 1990-12-01
14 schema:description The operator extending the classical solution of the Dirichlet problem for the quasilinear elliptic equation divA(x,▽u)=0 akin to thep-Laplace equation is shown to be unique providedA obeys a specific order principle. The Keldych lemma is also generalized to this nonlinear setting.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N2750b91917d84ef68310cce0bef42726
19 N5fd6323ddb6148888c13fed78505cecb
20 sg:journal.1136220
21 schema:name Generalized dirichlet problem in nonlinear potential theory
22 schema:pagination 25-44
23 schema:productId N2dfa36652da843bca44414f23d37a4e9
24 N88b9beaa567147e7beb624c2b67a22e7
25 Nd788701d738749f39e983b4459d4d14f
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032889808
27 https://doi.org/10.1007/bf02568480
28 schema:sdDatePublished 2019-04-11T13:32
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N6d68adf9e1794834bc296dab451fb273
31 schema:url http://link.springer.com/10.1007%2FBF02568480
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N2750b91917d84ef68310cce0bef42726 schema:issueNumber 1
36 rdf:type schema:PublicationIssue
37 N2dfa36652da843bca44414f23d37a4e9 schema:name readcube_id
38 schema:value 9caf0d97bda99846bc288deea74278dd2b5be10604b8a992a64b8f202aebd854
39 rdf:type schema:PropertyValue
40 N4bc49cd948874ef89033a5c436c86d9b rdf:first sg:person.016026347345.35
41 rdf:rest rdf:nil
42 N5fd6323ddb6148888c13fed78505cecb schema:volumeNumber 66
43 rdf:type schema:PublicationVolume
44 N6d68adf9e1794834bc296dab451fb273 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N88b9beaa567147e7beb624c2b67a22e7 schema:name doi
47 schema:value 10.1007/bf02568480
48 rdf:type schema:PropertyValue
49 Ncc99dc442b8b42f79704c40b4f6f2d2e rdf:first sg:person.011161247457.34
50 rdf:rest N4bc49cd948874ef89033a5c436c86d9b
51 Nd788701d738749f39e983b4459d4d14f schema:name dimensions_id
52 schema:value pub.1032889808
53 rdf:type schema:PropertyValue
54 sg:journal.1136220 schema:issn 0025-2611
55 1432-1785
56 schema:name manuscripta mathematica
57 rdf:type schema:Periodical
58 sg:person.011161247457.34 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
59 schema:familyName Kilpeläinen
60 schema:givenName Tero
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34
62 rdf:type schema:Person
63 sg:person.016026347345.35 schema:affiliation https://www.grid.ac/institutes/grid.4491.8
64 schema:familyName Malý
65 schema:givenName Jan
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35
67 rdf:type schema:Person
68 sg:pub.10.1007/bf01390188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003418178
69 https://doi.org/10.1007/bf01390188
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/bf02386110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046491329
72 https://doi.org/10.1007/bf02386110
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf02392541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019757244
75 https://doi.org/10.1007/bf02392541
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02786852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043114345
78 https://doi.org/10.1007/bf02786852
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1090/s0002-9947-1983-0690040-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050552716
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1090/s0002-9947-1988-0965751-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013424813
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1512/iumj.1973.22.22013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067511379
85 rdf:type schema:CreativeWork
86 https://doi.org/10.2140/pjm.1986.125.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069069159
87 rdf:type schema:CreativeWork
88 https://doi.org/10.5802/aif.1168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073136818
89 rdf:type schema:CreativeWork
90 https://doi.org/10.7146/math.scand.a-12229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073614034
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.4491.8 schema:alternateName Charles University
93 schema:name Matematicko-fyzykální fakulta, University Karlovy, Sokolovská 83, 186 00, Praha 8, Czechoslovakia
94 rdf:type schema:Organization
95 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
96 schema:name Department of Mathematics, University of Jyväskylä, Seminaarinkatu 15, 40100, Jyväskylä, Finland
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...