On the singularities of convex functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-12

AUTHORS

G. Alberti, L. Ambrosio, P. Cannarsa

ABSTRACT

Given a semi-convex functionu: ω⊂Rn→R and an integerk≡[0,1,n], we show that the set ∑k defined by is countably ℋn-k i.e., it is contained (up to a ℋn-k-negligible set) in a countable union ofC1 hypersurfaces of dimensions (n−k). Moreover, we show that for any open set ω′⊂⊂ω.

PAGES

421-435

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02567770

DOI

http://dx.doi.org/10.1007/bf02567770

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052475767


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scuola Normale Superiore di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.6093.c", 
          "name": [
            "Scuola Normale Superiore, P.za Cavalieri 7, 56126, Pisa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alberti", 
        "givenName": "G.", 
        "id": "sg:person.016436042355.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436042355.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Matematica, II Universit\u00e0 di Roma, Tor Vergata, 00173, Roma"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ambrosio", 
        "givenName": "L.", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Matematica, II Universit\u00e0 di Roma, Tor Vergata, 00173, Roma"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "P.", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-0396(69)90091-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050454127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(90)90068-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054544359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm1968v004n03abeh002799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058198699"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-12", 
    "datePublishedReg": "1992-12-01", 
    "description": "Given a semi-convex functionu: \u03c9\u2282Rn\u2192R and an integerk\u2261[0,1,n], we show that the set \u2211k defined by is countably \u210bn-k i.e., it is contained (up to a \u210bn-k-negligible set) in a countable union ofC1 hypersurfaces of dimensions (n\u2212k). Moreover, we show that for any open set \u03c9\u2032\u2282\u2282\u03c9.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02567770", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136220", 
        "issn": [
          "0025-2611", 
          "1432-1785"
        ], 
        "name": "manuscripta mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "76"
      }
    ], 
    "name": "On the singularities of convex functions", 
    "pagination": "421-435", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f9f5c33515c623dd08f5c2fcdca93ab11971f1d4f9d9530ab93496f09bcfa963"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02567770"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052475767"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02567770", 
      "https://app.dimensions.ai/details/publication/pub.1052475767"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46775_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02567770"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02567770'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02567770'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02567770'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02567770'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      20 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02567770 schema:author Nf8381f66e41b405e94de36fc79e77901
2 schema:citation https://doi.org/10.1016/0022-0396(69)90091-6
3 https://doi.org/10.1016/0022-0396(90)90068-z
4 https://doi.org/10.1070/sm1968v004n03abeh002799
5 schema:datePublished 1992-12
6 schema:datePublishedReg 1992-12-01
7 schema:description Given a semi-convex functionu: ω⊂Rn→R and an integerk≡[0,1,n], we show that the set ∑k defined by is countably ℋn-k i.e., it is contained (up to a ℋn-k-negligible set) in a countable union ofC1 hypersurfaces of dimensions (n−k). Moreover, we show that for any open set ω′⊂⊂ω.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1f2fcbaacec74f7aa931a5f38a5abf2a
12 N67d9c839b03e470f94bbb1d59ab530cc
13 sg:journal.1136220
14 schema:name On the singularities of convex functions
15 schema:pagination 421-435
16 schema:productId N2f9aa6e19f444e629ef2adf3c22d8a7e
17 N9c62bda174ea4b88a093b252ca418727
18 Nea11292b3ecb4b0fa0bb455b82fce1d4
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052475767
20 https://doi.org/10.1007/bf02567770
21 schema:sdDatePublished 2019-04-11T13:35
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N3dad1e749eea44ccbc702eb6c82c1f6d
24 schema:url http://link.springer.com/10.1007%2FBF02567770
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N1f2fcbaacec74f7aa931a5f38a5abf2a schema:volumeNumber 76
29 rdf:type schema:PublicationVolume
30 N2f9aa6e19f444e629ef2adf3c22d8a7e schema:name doi
31 schema:value 10.1007/bf02567770
32 rdf:type schema:PropertyValue
33 N3961a9e609f7406096e2c9657fc2799b rdf:first sg:person.012621721115.68
34 rdf:rest Ncdd665d82f744858b71a834e8dfba0a1
35 N3dad1e749eea44ccbc702eb6c82c1f6d schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N67d9c839b03e470f94bbb1d59ab530cc schema:issueNumber 1
38 rdf:type schema:PublicationIssue
39 N9c62bda174ea4b88a093b252ca418727 schema:name dimensions_id
40 schema:value pub.1052475767
41 rdf:type schema:PropertyValue
42 Ncdd665d82f744858b71a834e8dfba0a1 rdf:first sg:person.014257010655.09
43 rdf:rest rdf:nil
44 Nea11292b3ecb4b0fa0bb455b82fce1d4 schema:name readcube_id
45 schema:value f9f5c33515c623dd08f5c2fcdca93ab11971f1d4f9d9530ab93496f09bcfa963
46 rdf:type schema:PropertyValue
47 Nf8381f66e41b405e94de36fc79e77901 rdf:first sg:person.016436042355.89
48 rdf:rest N3961a9e609f7406096e2c9657fc2799b
49 sg:journal.1136220 schema:issn 0025-2611
50 1432-1785
51 schema:name manuscripta mathematica
52 rdf:type schema:Periodical
53 sg:person.012621721115.68 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
54 schema:familyName Ambrosio
55 schema:givenName L.
56 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
57 rdf:type schema:Person
58 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
59 schema:familyName Cannarsa
60 schema:givenName P.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
62 rdf:type schema:Person
63 sg:person.016436042355.89 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
64 schema:familyName Alberti
65 schema:givenName G.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436042355.89
67 rdf:type schema:Person
68 https://doi.org/10.1016/0022-0396(69)90091-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050454127
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1016/0022-0396(90)90068-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1054544359
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1070/sm1968v004n03abeh002799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058198699
73 rdf:type schema:CreativeWork
74 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
75 schema:name Scuola Normale Superiore, P.za Cavalieri 7, 56126, Pisa
76 rdf:type schema:Organization
77 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
78 schema:name Dipartimento di Matematica, II Università di Roma, Tor Vergata, 00173, Roma
79 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...