Determination of oil content of seeds by NIR: Influence of fatty acid composition on wavelength selection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-08

AUTHORS

J. A. Panford, J. M. deMan

ABSTRACT

The oil content of nine different types of oilseeds has been determined by near-infrared reflectance (NIR) spectroscopy. A Northstar computer was used to select the wavelengths that best represent the oil content in these seeds. Selected wavelengths were often in the same area of the spectrum, but calibrations differed with respect to the number of wavelength points required and their order of selection. Wavelength assignments for typical functional groups in fatty acids are discussed. The fatty acid composition and the predominant fatty acid component appeared to influence the wavelengths used for the estimation of oil content in each seed type. The mathematical treatments used appeared to affect absorption maxima of all seed types. Spectra of seed oils and their fatty acids indicated variation and closeness of absorption maxima. More... »

PAGES

473-482

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02540751

DOI

http://dx.doi.org/10.1007/bf02540751

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005449005


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Grain Research Laboratory, Canadian Grain Commission, 1404-303 Main Street, R3C 3G8, Winnipeg, Manitoba, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panford", 
        "givenName": "J. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Guelph", 
          "id": "https://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "Food Science Department, University of Guelph, Guelph, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "deMan", 
        "givenName": "J. M.", 
        "id": "sg:person.015775050501.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015775050501.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02540175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014872950", 
          "https://doi.org/10.1007/bf02540175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02533317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021780784", 
          "https://doi.org/10.1007/bf02533317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02533515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027085082", 
          "https://doi.org/10.1007/bf02533515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000175445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033789870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02641791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040170972", 
          "https://doi.org/10.1007/bf02641791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66896-8_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050344331", 
          "https://doi.org/10.1007/978-3-642-66896-8_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00142a008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054975493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60118a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055032333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/rnd:19790402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057061675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13031/2013.40747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064904839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj1971.00021962006300040016x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068988143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1968.0011183x000800050052x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069014595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1978.0011183x010800180034x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069018111"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-08", 
    "datePublishedReg": "1990-08-01", 
    "description": "The oil content of nine different types of oilseeds has been determined by near-infrared reflectance (NIR) spectroscopy. A Northstar computer was used to select the wavelengths that best represent the oil content in these seeds. Selected wavelengths were often in the same area of the spectrum, but calibrations differed with respect to the number of wavelength points required and their order of selection. Wavelength assignments for typical functional groups in fatty acids are discussed. The fatty acid composition and the predominant fatty acid component appeared to influence the wavelengths used for the estimation of oil content in each seed type. The mathematical treatments used appeared to affect absorption maxima of all seed types. Spectra of seed oils and their fatty acids indicated variation and closeness of absorption maxima.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02540751", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1082739", 
        "issn": [
          "0003-021X", 
          "1558-9331"
        ], 
        "name": "Journal of the American Oil Chemists' Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "Determination of oil content of seeds by NIR: Influence of fatty acid composition on wavelength selection", 
    "pagination": "473-482", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "19f64a322bd2075737a641eecb6e87b8a8f2cb6894af3c8624205cce87d043d5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02540751"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005449005"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02540751", 
      "https://app.dimensions.ai/details/publication/pub.1005449005"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02540751"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02540751'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02540751'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02540751'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02540751'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02540751 schema:about anzsrc-for:06
2 anzsrc-for:0607
3 schema:author N464b4f31e6d446389b572e8d38a2f36f
4 schema:citation sg:pub.10.1007/978-3-642-66896-8_3
5 sg:pub.10.1007/bf02533317
6 sg:pub.10.1007/bf02533515
7 sg:pub.10.1007/bf02540175
8 sg:pub.10.1007/bf02641791
9 https://doi.org/10.1021/ac00142a008
10 https://doi.org/10.1021/ac60118a010
11 https://doi.org/10.1051/rnd:19790402
12 https://doi.org/10.1159/000175445
13 https://doi.org/10.13031/2013.40747
14 https://doi.org/10.2134/agronj1971.00021962006300040016x
15 https://doi.org/10.2135/cropsci1968.0011183x000800050052x
16 https://doi.org/10.2135/cropsci1978.0011183x010800180034x
17 schema:datePublished 1990-08
18 schema:datePublishedReg 1990-08-01
19 schema:description The oil content of nine different types of oilseeds has been determined by near-infrared reflectance (NIR) spectroscopy. A Northstar computer was used to select the wavelengths that best represent the oil content in these seeds. Selected wavelengths were often in the same area of the spectrum, but calibrations differed with respect to the number of wavelength points required and their order of selection. Wavelength assignments for typical functional groups in fatty acids are discussed. The fatty acid composition and the predominant fatty acid component appeared to influence the wavelengths used for the estimation of oil content in each seed type. The mathematical treatments used appeared to affect absorption maxima of all seed types. Spectra of seed oils and their fatty acids indicated variation and closeness of absorption maxima.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N4d1bc84ca1d94ec8b6f97832d166d22e
24 Nd5847a84dcbb4104bf10c9bb9569e3ce
25 sg:journal.1082739
26 schema:name Determination of oil content of seeds by NIR: Influence of fatty acid composition on wavelength selection
27 schema:pagination 473-482
28 schema:productId N0e88ff045e87447aa3c72e8d1584b228
29 N25c6dc1edb3c4de29adc7e10a0901e93
30 Nacf66fc7cbbe4bd0b3a8b310644516c5
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005449005
32 https://doi.org/10.1007/bf02540751
33 schema:sdDatePublished 2019-04-10T22:29
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N52be4dd36494440abef65f7961e25190
36 schema:url http://link.springer.com/10.1007%2FBF02540751
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N0e88ff045e87447aa3c72e8d1584b228 schema:name dimensions_id
41 schema:value pub.1005449005
42 rdf:type schema:PropertyValue
43 N13f7e16c8f5c4ae4be3ebb7cad4dd460 rdf:first sg:person.015775050501.91
44 rdf:rest rdf:nil
45 N25c6dc1edb3c4de29adc7e10a0901e93 schema:name doi
46 schema:value 10.1007/bf02540751
47 rdf:type schema:PropertyValue
48 N2f0c4e264d3e4e3bb515264dcb3cbb95 schema:affiliation N463d4de13d994f79bd7f57f603af2e3a
49 schema:familyName Panford
50 schema:givenName J. A.
51 rdf:type schema:Person
52 N463d4de13d994f79bd7f57f603af2e3a schema:name Grain Research Laboratory, Canadian Grain Commission, 1404-303 Main Street, R3C 3G8, Winnipeg, Manitoba, Canada
53 rdf:type schema:Organization
54 N464b4f31e6d446389b572e8d38a2f36f rdf:first N2f0c4e264d3e4e3bb515264dcb3cbb95
55 rdf:rest N13f7e16c8f5c4ae4be3ebb7cad4dd460
56 N4d1bc84ca1d94ec8b6f97832d166d22e schema:volumeNumber 67
57 rdf:type schema:PublicationVolume
58 N52be4dd36494440abef65f7961e25190 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nacf66fc7cbbe4bd0b3a8b310644516c5 schema:name readcube_id
61 schema:value 19f64a322bd2075737a641eecb6e87b8a8f2cb6894af3c8624205cce87d043d5
62 rdf:type schema:PropertyValue
63 Nd5847a84dcbb4104bf10c9bb9569e3ce schema:issueNumber 8
64 rdf:type schema:PublicationIssue
65 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
66 schema:name Biological Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
69 schema:name Plant Biology
70 rdf:type schema:DefinedTerm
71 sg:journal.1082739 schema:issn 0003-021X
72 1558-9331
73 schema:name Journal of the American Oil Chemists' Society
74 rdf:type schema:Periodical
75 sg:person.015775050501.91 schema:affiliation https://www.grid.ac/institutes/grid.34429.38
76 schema:familyName deMan
77 schema:givenName J. M.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015775050501.91
79 rdf:type schema:Person
80 sg:pub.10.1007/978-3-642-66896-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050344331
81 https://doi.org/10.1007/978-3-642-66896-8_3
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf02533317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021780784
84 https://doi.org/10.1007/bf02533317
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf02533515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027085082
87 https://doi.org/10.1007/bf02533515
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf02540175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014872950
90 https://doi.org/10.1007/bf02540175
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf02641791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170972
93 https://doi.org/10.1007/bf02641791
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1021/ac00142a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054975493
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1021/ac60118a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055032333
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1051/rnd:19790402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057061675
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1159/000175445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033789870
102 rdf:type schema:CreativeWork
103 https://doi.org/10.13031/2013.40747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064904839
104 rdf:type schema:CreativeWork
105 https://doi.org/10.2134/agronj1971.00021962006300040016x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068988143
106 rdf:type schema:CreativeWork
107 https://doi.org/10.2135/cropsci1968.0011183x000800050052x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069014595
108 rdf:type schema:CreativeWork
109 https://doi.org/10.2135/cropsci1978.0011183x010800180034x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069018111
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.34429.38 schema:alternateName University of Guelph
112 schema:name Food Science Department, University of Guelph, Guelph, Ontario, Canada
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...