Design of fundamental gravity networks based on the approximation of the given variance-covariance matrix View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-12

AUTHORS

A. Sárhidai

ABSTRACT

Techniques will be presented for the design of one-dimensional gravity nets by means of given variance-covariance matrices. After a critical review of the methods for the solution of the matrix equation (ĀTP̄Ā)−1 = Q̄X, we shall compare different numerical results in order to judge the quality of the designs carried out by means of anSVD criterion matrix, by a criterion matrix created according to an assumed distance-dependence of the mean errors of the grid points, and by means of an iteratively improved criterion matrix respectively. More... »

PAGES

355-376

References to SciGraph publications

  • 1978-12. Improvement of parameter accuracy by choice and quality of observation in BULLETIN GÉODÉSIQUE (1946-1975)
  • 1978-12. Two approximation problems in function spaces in ARKIV FÖR MATEMATIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02522343

    DOI

    http://dx.doi.org/10.1007/bf02522343

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048692530


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "E\u00f6tv\u00f6s Lor\u00e1nd Geophysical Institute, Columbus 17-23, 1145, Budapest, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "S\u00e1rhidai", 
            "givenName": "A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02521828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007463806", 
              "https://doi.org/10.1007/bf02521828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02521828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007463806", 
              "https://doi.org/10.1007/bf02521828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/sre.1979.25.192.68", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033020522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02385982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045219809", 
              "https://doi.org/10.1007/bf02385982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02385982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045219809", 
              "https://doi.org/10.1007/bf02385982"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1986-12", 
        "datePublishedReg": "1986-12-01", 
        "description": "Techniques will be presented for the design of one-dimensional gravity nets by means of given variance-covariance matrices. After a critical review of the methods for the solution of the matrix equation (\u0100TP\u0304\u0100)\u22121 = Q\u0304X, we shall compare different numerical results in order to judge the quality of the designs carried out by means of anSVD criterion matrix, by a criterion matrix created according to an assumed distance-dependence of the mean errors of the grid points, and by means of an iteratively improved criterion matrix respectively.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02522343", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1335444", 
            "issn": [
              "0007-4632"
            ], 
            "name": "Bulletin G\u00e9od\u00e9sique (1922-1943)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "60"
          }
        ], 
        "name": "Design of fundamental gravity networks based on the approximation of the given variance-covariance matrix", 
        "pagination": "355-376", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e7f65798719cefaeda1aaaff606dd9363227e77729649e57750539ba795669ca"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02522343"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048692530"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02522343", 
          "https://app.dimensions.ai/details/publication/pub.1048692530"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000508.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02522343"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02522343'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02522343'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02522343'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02522343'


     

    This table displays all metadata directly associated to this object as RDF triples.

    69 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02522343 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N5aa56de913f14c4da295db9f0bcc313b
    4 schema:citation sg:pub.10.1007/bf02385982
    5 sg:pub.10.1007/bf02521828
    6 https://doi.org/10.1179/sre.1979.25.192.68
    7 schema:datePublished 1986-12
    8 schema:datePublishedReg 1986-12-01
    9 schema:description Techniques will be presented for the design of one-dimensional gravity nets by means of given variance-covariance matrices. After a critical review of the methods for the solution of the matrix equation (ĀTP̄Ā)−1 = Q̄X, we shall compare different numerical results in order to judge the quality of the designs carried out by means of anSVD criterion matrix, by a criterion matrix created according to an assumed distance-dependence of the mean errors of the grid points, and by means of an iteratively improved criterion matrix respectively.
    10 schema:genre research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N04c30d0a1dec4f10b51e91746c7781a6
    14 N8131a25844b141a9b78d4f6ae4d18fab
    15 sg:journal.1335444
    16 schema:name Design of fundamental gravity networks based on the approximation of the given variance-covariance matrix
    17 schema:pagination 355-376
    18 schema:productId N3c1539ff66d64227880461cba7219f3d
    19 N729c3a0c26654680adc044513fe354fb
    20 Ne8557772be51434c82451a2b4cf5fa72
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048692530
    22 https://doi.org/10.1007/bf02522343
    23 schema:sdDatePublished 2019-04-11T00:15
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher Na30aedcc9838443a9bb1c19d97dbcecd
    26 schema:url http://link.springer.com/10.1007%2FBF02522343
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N04c30d0a1dec4f10b51e91746c7781a6 schema:issueNumber 4
    31 rdf:type schema:PublicationIssue
    32 N3c1539ff66d64227880461cba7219f3d schema:name doi
    33 schema:value 10.1007/bf02522343
    34 rdf:type schema:PropertyValue
    35 N3f03984759db4525aab00363f3d76311 schema:affiliation Nf4d94131bc3f40718f93fffa2cd26dab
    36 schema:familyName Sárhidai
    37 schema:givenName A.
    38 rdf:type schema:Person
    39 N5aa56de913f14c4da295db9f0bcc313b rdf:first N3f03984759db4525aab00363f3d76311
    40 rdf:rest rdf:nil
    41 N729c3a0c26654680adc044513fe354fb schema:name dimensions_id
    42 schema:value pub.1048692530
    43 rdf:type schema:PropertyValue
    44 N8131a25844b141a9b78d4f6ae4d18fab schema:volumeNumber 60
    45 rdf:type schema:PublicationVolume
    46 Na30aedcc9838443a9bb1c19d97dbcecd schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 Ne8557772be51434c82451a2b4cf5fa72 schema:name readcube_id
    49 schema:value e7f65798719cefaeda1aaaff606dd9363227e77729649e57750539ba795669ca
    50 rdf:type schema:PropertyValue
    51 Nf4d94131bc3f40718f93fffa2cd26dab schema:name Eötvös Loránd Geophysical Institute, Columbus 17-23, 1145, Budapest, Hungary
    52 rdf:type schema:Organization
    53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Mathematical Sciences
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Numerical and Computational Mathematics
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1335444 schema:issn 0007-4632
    60 schema:name Bulletin Géodésique (1922-1943)
    61 rdf:type schema:Periodical
    62 sg:pub.10.1007/bf02385982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045219809
    63 https://doi.org/10.1007/bf02385982
    64 rdf:type schema:CreativeWork
    65 sg:pub.10.1007/bf02521828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007463806
    66 https://doi.org/10.1007/bf02521828
    67 rdf:type schema:CreativeWork
    68 https://doi.org/10.1179/sre.1979.25.192.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033020522
    69 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...