Design of fundamental gravity networks based on the approximation of the given variance-covariance matrix View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-12

AUTHORS

A. Sárhidai

ABSTRACT

Techniques will be presented for the design of one-dimensional gravity nets by means of given variance-covariance matrices. After a critical review of the methods for the solution of the matrix equation (ĀTP̄Ā)−1 = Q̄X, we shall compare different numerical results in order to judge the quality of the designs carried out by means of anSVD criterion matrix, by a criterion matrix created according to an assumed distance-dependence of the mean errors of the grid points, and by means of an iteratively improved criterion matrix respectively. More... »

PAGES

355-376

References to SciGraph publications

  • 1978-12. Improvement of parameter accuracy by choice and quality of observation in BULLETIN GÉODÉSIQUE (1946-1975)
  • 1978-12. Two approximation problems in function spaces in ARKIV FÖR MATEMATIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02522343

    DOI

    http://dx.doi.org/10.1007/bf02522343

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048692530


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "E\u00f6tv\u00f6s Lor\u00e1nd Geophysical Institute, Columbus 17-23, 1145, Budapest, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "S\u00e1rhidai", 
            "givenName": "A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02521828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007463806", 
              "https://doi.org/10.1007/bf02521828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02521828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007463806", 
              "https://doi.org/10.1007/bf02521828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/sre.1979.25.192.68", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033020522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02385982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045219809", 
              "https://doi.org/10.1007/bf02385982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02385982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045219809", 
              "https://doi.org/10.1007/bf02385982"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1986-12", 
        "datePublishedReg": "1986-12-01", 
        "description": "Techniques will be presented for the design of one-dimensional gravity nets by means of given variance-covariance matrices. After a critical review of the methods for the solution of the matrix equation (\u0100TP\u0304\u0100)\u22121 = Q\u0304X, we shall compare different numerical results in order to judge the quality of the designs carried out by means of anSVD criterion matrix, by a criterion matrix created according to an assumed distance-dependence of the mean errors of the grid points, and by means of an iteratively improved criterion matrix respectively.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02522343", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1335444", 
            "issn": [
              "0007-4632"
            ], 
            "name": "Bulletin G\u00e9od\u00e9sique (1922-1943)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "60"
          }
        ], 
        "name": "Design of fundamental gravity networks based on the approximation of the given variance-covariance matrix", 
        "pagination": "355-376", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e7f65798719cefaeda1aaaff606dd9363227e77729649e57750539ba795669ca"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02522343"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048692530"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02522343", 
          "https://app.dimensions.ai/details/publication/pub.1048692530"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000508.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02522343"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02522343'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02522343'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02522343'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02522343'


     

    This table displays all metadata directly associated to this object as RDF triples.

    69 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02522343 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author Ncd249e2e295a482aa749e95a29e58569
    4 schema:citation sg:pub.10.1007/bf02385982
    5 sg:pub.10.1007/bf02521828
    6 https://doi.org/10.1179/sre.1979.25.192.68
    7 schema:datePublished 1986-12
    8 schema:datePublishedReg 1986-12-01
    9 schema:description Techniques will be presented for the design of one-dimensional gravity nets by means of given variance-covariance matrices. After a critical review of the methods for the solution of the matrix equation (ĀTP̄Ā)−1 = Q̄X, we shall compare different numerical results in order to judge the quality of the designs carried out by means of anSVD criterion matrix, by a criterion matrix created according to an assumed distance-dependence of the mean errors of the grid points, and by means of an iteratively improved criterion matrix respectively.
    10 schema:genre research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N1d268971ebf746f9b6e5baeb3cf709c1
    14 Nf912fe26e22e4d05bd95f5ab6f98832a
    15 sg:journal.1335444
    16 schema:name Design of fundamental gravity networks based on the approximation of the given variance-covariance matrix
    17 schema:pagination 355-376
    18 schema:productId N01738ef3349f4d5aa31937f65e067617
    19 N048ba3b3c0df42f497bd47c35a9a86bd
    20 N41fe9f65558a4dc9bcfc59f5a701d4e6
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048692530
    22 https://doi.org/10.1007/bf02522343
    23 schema:sdDatePublished 2019-04-11T00:15
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher Nff927f1cfabd4db9b205aa31aa5d80dd
    26 schema:url http://link.springer.com/10.1007%2FBF02522343
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N01738ef3349f4d5aa31937f65e067617 schema:name dimensions_id
    31 schema:value pub.1048692530
    32 rdf:type schema:PropertyValue
    33 N048ba3b3c0df42f497bd47c35a9a86bd schema:name doi
    34 schema:value 10.1007/bf02522343
    35 rdf:type schema:PropertyValue
    36 N1d268971ebf746f9b6e5baeb3cf709c1 schema:volumeNumber 60
    37 rdf:type schema:PublicationVolume
    38 N41fe9f65558a4dc9bcfc59f5a701d4e6 schema:name readcube_id
    39 schema:value e7f65798719cefaeda1aaaff606dd9363227e77729649e57750539ba795669ca
    40 rdf:type schema:PropertyValue
    41 Nc6194cf747ff4e39be0a763be83831dc schema:name Eötvös Loránd Geophysical Institute, Columbus 17-23, 1145, Budapest, Hungary
    42 rdf:type schema:Organization
    43 Ncd249e2e295a482aa749e95a29e58569 rdf:first Nd33dec1f129c4f3c993fedd039e617b1
    44 rdf:rest rdf:nil
    45 Nd33dec1f129c4f3c993fedd039e617b1 schema:affiliation Nc6194cf747ff4e39be0a763be83831dc
    46 schema:familyName Sárhidai
    47 schema:givenName A.
    48 rdf:type schema:Person
    49 Nf912fe26e22e4d05bd95f5ab6f98832a schema:issueNumber 4
    50 rdf:type schema:PublicationIssue
    51 Nff927f1cfabd4db9b205aa31aa5d80dd schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Mathematical Sciences
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Numerical and Computational Mathematics
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1335444 schema:issn 0007-4632
    60 schema:name Bulletin Géodésique (1922-1943)
    61 rdf:type schema:Periodical
    62 sg:pub.10.1007/bf02385982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045219809
    63 https://doi.org/10.1007/bf02385982
    64 rdf:type schema:CreativeWork
    65 sg:pub.10.1007/bf02521828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007463806
    66 https://doi.org/10.1007/bf02521828
    67 rdf:type schema:CreativeWork
    68 https://doi.org/10.1179/sre.1979.25.192.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033020522
    69 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...