Improvement of parameter accuracy by choice and quality of observation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1978-12

AUTHORS

William H. Sprinsky

ABSTRACT

In a least squares adjustment (a minimum variance solution) using the technique of variation of coordinates (observation equations), a key result is the co-variance (dispersion) matrix of parameters. Assuming that standard errors of observations are used in the formation of the normal equations, rather than relative weights, this dispersion matrix gives the estimates of standard errors for the parameters solved for in the adjustment. A method will be presented which allows the designer of the observing plan to alter this dispersion matrix, which may not meet user requirements, so that it will meet user requirements and, from its inverse, solve mathematically for the selection and quality (accuracy) of the observations required to form this altered dispersion matrix of parameters. More... »

PAGES

269-279

Journal

TITLE

Bulletin Géodésique (1946-1975)

ISSUE

4

VOLUME

52

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02521828

DOI

http://dx.doi.org/10.1007/bf02521828

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007463806


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "United States Army", 
          "id": "https://www.grid.ac/institutes/grid.420176.6", 
          "name": [
            "U.S. Army Defense Mapping School, 22060, Fort Belvoir, Virginia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sprinsky", 
        "givenName": "William H.", 
        "id": "sg:person.016476567401.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016476567401.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/jb078i026p05887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045895875"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1978-12", 
    "datePublishedReg": "1978-12-01", 
    "description": "In a least squares adjustment (a minimum variance solution) using the technique of variation of coordinates (observation equations), a key result is the co-variance (dispersion) matrix of parameters. Assuming that standard errors of observations are used in the formation of the normal equations, rather than relative weights, this dispersion matrix gives the estimates of standard errors for the parameters solved for in the adjustment. A method will be presented which allows the designer of the observing plan to alter this dispersion matrix, which may not meet user requirements, so that it will meet user requirements and, from its inverse, solve mathematically for the selection and quality (accuracy) of the observations required to form this altered dispersion matrix of parameters.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02521828", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336115", 
        "issn": [
          "0007-4632"
        ], 
        "name": "Bulletin G\u00e9od\u00e9sique (1946-1975)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Improvement of parameter accuracy by choice and quality of observation", 
    "pagination": "269-279", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "238d36192b422350272cdde41ddb94ba4745d1aa08b7f6a77334bfa698ff6341"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02521828"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007463806"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02521828", 
      "https://app.dimensions.ai/details/publication/pub.1007463806"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02521828"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02521828'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02521828'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02521828'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02521828'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02521828 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nf06c6f319ebf4cd4873ddba4366f7ca6
4 schema:citation https://doi.org/10.1029/jb078i026p05887
5 schema:datePublished 1978-12
6 schema:datePublishedReg 1978-12-01
7 schema:description In a least squares adjustment (a minimum variance solution) using the technique of variation of coordinates (observation equations), a key result is the co-variance (dispersion) matrix of parameters. Assuming that standard errors of observations are used in the formation of the normal equations, rather than relative weights, this dispersion matrix gives the estimates of standard errors for the parameters solved for in the adjustment. A method will be presented which allows the designer of the observing plan to alter this dispersion matrix, which may not meet user requirements, so that it will meet user requirements and, from its inverse, solve mathematically for the selection and quality (accuracy) of the observations required to form this altered dispersion matrix of parameters.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N2a3b1e1f355045ba8f1e949c2fd13137
12 N319bf1eaba314a658559750e69ddc4f5
13 sg:journal.1336115
14 schema:name Improvement of parameter accuracy by choice and quality of observation
15 schema:pagination 269-279
16 schema:productId N378ace0d674645629aaab25bd88529f4
17 Nbab81417f834415f8a9f507820463b09
18 Nff7567272ccf4028ab09e134f232a277
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007463806
20 https://doi.org/10.1007/bf02521828
21 schema:sdDatePublished 2019-04-11T13:27
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Na6150aaf1ebf49ad88890ecee94c79ec
24 schema:url http://link.springer.com/10.1007%2FBF02521828
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N2a3b1e1f355045ba8f1e949c2fd13137 schema:volumeNumber 52
29 rdf:type schema:PublicationVolume
30 N319bf1eaba314a658559750e69ddc4f5 schema:issueNumber 4
31 rdf:type schema:PublicationIssue
32 N378ace0d674645629aaab25bd88529f4 schema:name doi
33 schema:value 10.1007/bf02521828
34 rdf:type schema:PropertyValue
35 Na6150aaf1ebf49ad88890ecee94c79ec schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 Nbab81417f834415f8a9f507820463b09 schema:name dimensions_id
38 schema:value pub.1007463806
39 rdf:type schema:PropertyValue
40 Nf06c6f319ebf4cd4873ddba4366f7ca6 rdf:first sg:person.016476567401.94
41 rdf:rest rdf:nil
42 Nff7567272ccf4028ab09e134f232a277 schema:name readcube_id
43 schema:value 238d36192b422350272cdde41ddb94ba4745d1aa08b7f6a77334bfa698ff6341
44 rdf:type schema:PropertyValue
45 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
46 schema:name Mathematical Sciences
47 rdf:type schema:DefinedTerm
48 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
49 schema:name Statistics
50 rdf:type schema:DefinedTerm
51 sg:journal.1336115 schema:issn 0007-4632
52 schema:name Bulletin Géodésique (1946-1975)
53 rdf:type schema:Periodical
54 sg:person.016476567401.94 schema:affiliation https://www.grid.ac/institutes/grid.420176.6
55 schema:familyName Sprinsky
56 schema:givenName William H.
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016476567401.94
58 rdf:type schema:Person
59 https://doi.org/10.1029/jb078i026p05887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045895875
60 rdf:type schema:CreativeWork
61 https://www.grid.ac/institutes/grid.420176.6 schema:alternateName United States Army
62 schema:name U.S. Army Defense Mapping School, 22060, Fort Belvoir, Virginia
63 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...