Improvement of parameter accuracy by choice and quality of observation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1978-12

AUTHORS

William H. Sprinsky

ABSTRACT

In a least squares adjustment (a minimum variance solution) using the technique of variation of coordinates (observation equations), a key result is the co-variance (dispersion) matrix of parameters. Assuming that standard errors of observations are used in the formation of the normal equations, rather than relative weights, this dispersion matrix gives the estimates of standard errors for the parameters solved for in the adjustment. A method will be presented which allows the designer of the observing plan to alter this dispersion matrix, which may not meet user requirements, so that it will meet user requirements and, from its inverse, solve mathematically for the selection and quality (accuracy) of the observations required to form this altered dispersion matrix of parameters. More... »

PAGES

269-279

Journal

TITLE

Bulletin Géodésique (1946-1975)

ISSUE

4

VOLUME

52

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02521828

DOI

http://dx.doi.org/10.1007/bf02521828

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007463806


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "United States Army", 
          "id": "https://www.grid.ac/institutes/grid.420176.6", 
          "name": [
            "U.S. Army Defense Mapping School, 22060, Fort Belvoir, Virginia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sprinsky", 
        "givenName": "William H.", 
        "id": "sg:person.016476567401.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016476567401.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/jb078i026p05887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045895875"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1978-12", 
    "datePublishedReg": "1978-12-01", 
    "description": "In a least squares adjustment (a minimum variance solution) using the technique of variation of coordinates (observation equations), a key result is the co-variance (dispersion) matrix of parameters. Assuming that standard errors of observations are used in the formation of the normal equations, rather than relative weights, this dispersion matrix gives the estimates of standard errors for the parameters solved for in the adjustment. A method will be presented which allows the designer of the observing plan to alter this dispersion matrix, which may not meet user requirements, so that it will meet user requirements and, from its inverse, solve mathematically for the selection and quality (accuracy) of the observations required to form this altered dispersion matrix of parameters.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02521828", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336115", 
        "issn": [
          "0007-4632"
        ], 
        "name": "Bulletin G\u00e9od\u00e9sique (1946-1975)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Improvement of parameter accuracy by choice and quality of observation", 
    "pagination": "269-279", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "238d36192b422350272cdde41ddb94ba4745d1aa08b7f6a77334bfa698ff6341"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02521828"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007463806"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02521828", 
      "https://app.dimensions.ai/details/publication/pub.1007463806"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02521828"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02521828'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02521828'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02521828'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02521828'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02521828 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nefbe27060ab74132a186c9a4d12a6f80
4 schema:citation https://doi.org/10.1029/jb078i026p05887
5 schema:datePublished 1978-12
6 schema:datePublishedReg 1978-12-01
7 schema:description In a least squares adjustment (a minimum variance solution) using the technique of variation of coordinates (observation equations), a key result is the co-variance (dispersion) matrix of parameters. Assuming that standard errors of observations are used in the formation of the normal equations, rather than relative weights, this dispersion matrix gives the estimates of standard errors for the parameters solved for in the adjustment. A method will be presented which allows the designer of the observing plan to alter this dispersion matrix, which may not meet user requirements, so that it will meet user requirements and, from its inverse, solve mathematically for the selection and quality (accuracy) of the observations required to form this altered dispersion matrix of parameters.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N53966f4a6f7e4a2bace3a41dc9d2ac41
12 N6eeae8a48a8743c2bd8e6e9635ebd238
13 sg:journal.1336115
14 schema:name Improvement of parameter accuracy by choice and quality of observation
15 schema:pagination 269-279
16 schema:productId N679c3468e1c64330809639e4696566b7
17 Ne5f1db61c07c45c28788cd9a9b3de445
18 Nf962338f1bb9416d87c2daf5f5d6f18e
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007463806
20 https://doi.org/10.1007/bf02521828
21 schema:sdDatePublished 2019-04-11T13:27
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N9977b587fc334a78bdc0f19d1750274c
24 schema:url http://link.springer.com/10.1007%2FBF02521828
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N53966f4a6f7e4a2bace3a41dc9d2ac41 schema:issueNumber 4
29 rdf:type schema:PublicationIssue
30 N679c3468e1c64330809639e4696566b7 schema:name doi
31 schema:value 10.1007/bf02521828
32 rdf:type schema:PropertyValue
33 N6eeae8a48a8743c2bd8e6e9635ebd238 schema:volumeNumber 52
34 rdf:type schema:PublicationVolume
35 N9977b587fc334a78bdc0f19d1750274c schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 Ne5f1db61c07c45c28788cd9a9b3de445 schema:name readcube_id
38 schema:value 238d36192b422350272cdde41ddb94ba4745d1aa08b7f6a77334bfa698ff6341
39 rdf:type schema:PropertyValue
40 Nefbe27060ab74132a186c9a4d12a6f80 rdf:first sg:person.016476567401.94
41 rdf:rest rdf:nil
42 Nf962338f1bb9416d87c2daf5f5d6f18e schema:name dimensions_id
43 schema:value pub.1007463806
44 rdf:type schema:PropertyValue
45 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
46 schema:name Mathematical Sciences
47 rdf:type schema:DefinedTerm
48 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
49 schema:name Statistics
50 rdf:type schema:DefinedTerm
51 sg:journal.1336115 schema:issn 0007-4632
52 schema:name Bulletin Géodésique (1946-1975)
53 rdf:type schema:Periodical
54 sg:person.016476567401.94 schema:affiliation https://www.grid.ac/institutes/grid.420176.6
55 schema:familyName Sprinsky
56 schema:givenName William H.
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016476567401.94
58 rdf:type schema:Person
59 https://doi.org/10.1029/jb078i026p05887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045895875
60 rdf:type schema:CreativeWork
61 https://www.grid.ac/institutes/grid.420176.6 schema:alternateName United States Army
62 schema:name U.S. Army Defense Mapping School, 22060, Fort Belvoir, Virginia
63 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...