Determination of spatial distribution of gas concentration in an inhomogeneous gas volume from integral characteristics of attenuation of laser radiation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-06

AUTHORS

M. E. Antipin, O. K. Voitsekhovskaya, F. G. Shatrov

ABSTRACT

The problem of finding a one-dimensional distribution of the concentration of an individual component in a thermodynamically inhomogeneous gas mixture is considered. Use is made of a polynomial approximation of the absorption coefficient along the path as a function of the spatial coordinate. The spatial distribution of the gas concentration is regarded as a probability density function. A computational scheme is proposed for quantities analogous to statistical moments. A numerical experiment has been performed using estimates of these quantities for vertical ozone and water vapor distributions in the atmosphere as examples. This approach is deemed appropriate for extended paths, such as the Earth—space path, where traditional methods prove to be ineffective. More... »

PAGES

552-556

Journal

TITLE

Russian Physics Journal

ISSUE

6

VOLUME

42

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02508272

DOI

http://dx.doi.org/10.1007/bf02508272

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046498231


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Antipin", 
        "givenName": "M. E.", 
        "id": "sg:person.07606322411.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07606322411.12"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Voitsekhovskaya", 
        "givenName": "O. K.", 
        "id": "sg:person.013140045043.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140045043.23"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Shatrov", 
        "givenName": "F. G.", 
        "id": "sg:person.01365024222.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365024222.23"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999-06", 
    "datePublishedReg": "1999-06-01", 
    "description": "The problem of finding a one-dimensional distribution of the concentration of an individual component in a thermodynamically inhomogeneous gas mixture is considered. Use is made of a polynomial approximation of the absorption coefficient along the path as a function of the spatial coordinate. The spatial distribution of the gas concentration is regarded as a probability density function. A computational scheme is proposed for quantities analogous to statistical moments. A numerical experiment has been performed using estimates of these quantities for vertical ozone and water vapor distributions in the atmosphere as examples. This approach is deemed appropriate for extended paths, such as the Earth\u2014space path, where traditional methods prove to be ineffective.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02508272", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313824", 
        "issn": [
          "1064-8887", 
          "1573-9228"
        ], 
        "name": "Russian Physics Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "keywords": [
      "gas concentrations", 
      "inhomogeneous gas mixtures", 
      "water vapor distribution", 
      "vapor distribution", 
      "gas mixture", 
      "integral characteristics", 
      "spatial distribution", 
      "vertical ozone", 
      "gas volume", 
      "laser radiation", 
      "absorption coefficient", 
      "spatial coordinates", 
      "probability density function", 
      "numerical experiments", 
      "earth-space path", 
      "one-dimensional distribution", 
      "statistical moments", 
      "computational scheme", 
      "density function", 
      "traditional methods", 
      "distribution", 
      "individual components", 
      "path", 
      "polynomial approximation", 
      "atmosphere", 
      "quantity", 
      "coefficient", 
      "mixture", 
      "concentration", 
      "characteristics", 
      "attenuation", 
      "experiments", 
      "coordinates", 
      "radiation", 
      "method", 
      "components", 
      "scheme", 
      "ozone", 
      "volume", 
      "extended path", 
      "problem", 
      "determination", 
      "approximation", 
      "moment", 
      "example", 
      "approach", 
      "use", 
      "function", 
      "estimates", 
      "inhomogeneous gas volume"
    ], 
    "name": "Determination of spatial distribution of gas concentration in an inhomogeneous gas volume from integral characteristics of attenuation of laser radiation", 
    "pagination": "552-556", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046498231"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02508272"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02508272", 
      "https://app.dimensions.ai/details/publication/pub.1046498231"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_340.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02508272"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02508272'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02508272'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02508272'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02508272'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      76 URIs      68 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02508272 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N503a099832d0448b898efcb423a034d0
4 schema:datePublished 1999-06
5 schema:datePublishedReg 1999-06-01
6 schema:description The problem of finding a one-dimensional distribution of the concentration of an individual component in a thermodynamically inhomogeneous gas mixture is considered. Use is made of a polynomial approximation of the absorption coefficient along the path as a function of the spatial coordinate. The spatial distribution of the gas concentration is regarded as a probability density function. A computational scheme is proposed for quantities analogous to statistical moments. A numerical experiment has been performed using estimates of these quantities for vertical ozone and water vapor distributions in the atmosphere as examples. This approach is deemed appropriate for extended paths, such as the Earth—space path, where traditional methods prove to be ineffective.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N3e21b158854240b29fe696540a6ccc66
11 N4cc1cf19d6444b04b5f1848f9dc247c3
12 sg:journal.1313824
13 schema:keywords absorption coefficient
14 approach
15 approximation
16 atmosphere
17 attenuation
18 characteristics
19 coefficient
20 components
21 computational scheme
22 concentration
23 coordinates
24 density function
25 determination
26 distribution
27 earth-space path
28 estimates
29 example
30 experiments
31 extended path
32 function
33 gas concentrations
34 gas mixture
35 gas volume
36 individual components
37 inhomogeneous gas mixtures
38 inhomogeneous gas volume
39 integral characteristics
40 laser radiation
41 method
42 mixture
43 moment
44 numerical experiments
45 one-dimensional distribution
46 ozone
47 path
48 polynomial approximation
49 probability density function
50 problem
51 quantity
52 radiation
53 scheme
54 spatial coordinates
55 spatial distribution
56 statistical moments
57 traditional methods
58 use
59 vapor distribution
60 vertical ozone
61 volume
62 water vapor distribution
63 schema:name Determination of spatial distribution of gas concentration in an inhomogeneous gas volume from integral characteristics of attenuation of laser radiation
64 schema:pagination 552-556
65 schema:productId Nc6963b3e03cb4a09a183a07c76e335c2
66 Ncdf0716eb5c042e196bcccdbe50094f5
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046498231
68 https://doi.org/10.1007/bf02508272
69 schema:sdDatePublished 2021-12-01T19:13
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N41239c87414c426b9559109e3ab3ec88
72 schema:url https://doi.org/10.1007/bf02508272
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N3e21b158854240b29fe696540a6ccc66 schema:volumeNumber 42
77 rdf:type schema:PublicationVolume
78 N41239c87414c426b9559109e3ab3ec88 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N4cc1cf19d6444b04b5f1848f9dc247c3 schema:issueNumber 6
81 rdf:type schema:PublicationIssue
82 N503a099832d0448b898efcb423a034d0 rdf:first sg:person.07606322411.12
83 rdf:rest Nb75ed9e367324b2d918cca2b8a44f16e
84 N5d07072a467c47218ed995652629cb0f rdf:first sg:person.01365024222.23
85 rdf:rest rdf:nil
86 Nb75ed9e367324b2d918cca2b8a44f16e rdf:first sg:person.013140045043.23
87 rdf:rest N5d07072a467c47218ed995652629cb0f
88 Nc6963b3e03cb4a09a183a07c76e335c2 schema:name dimensions_id
89 schema:value pub.1046498231
90 rdf:type schema:PropertyValue
91 Ncdf0716eb5c042e196bcccdbe50094f5 schema:name doi
92 schema:value 10.1007/bf02508272
93 rdf:type schema:PropertyValue
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
98 schema:name Geomatic Engineering
99 rdf:type schema:DefinedTerm
100 sg:journal.1313824 schema:issn 1064-8887
101 1573-9228
102 schema:name Russian Physics Journal
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.013140045043.23 schema:familyName Voitsekhovskaya
106 schema:givenName O. K.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140045043.23
108 rdf:type schema:Person
109 sg:person.01365024222.23 schema:familyName Shatrov
110 schema:givenName F. G.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365024222.23
112 rdf:type schema:Person
113 sg:person.07606322411.12 schema:familyName Antipin
114 schema:givenName M. E.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07606322411.12
116 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...