Voice-controlled modular fuzzy neural controller with enhanced user autonomy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-03

AUTHORS

K. Pulasinghe, K. Watanabe, K. Kiguchi, K. Izumi

ABSTRACT

In this article, a fuzzy neural network (FNN)-based approach is presented to interpret imprecise natural language (NL) commands for controlling a machine. This system, (1) interprets fuzzy linguistic information in NL commands for machines, (2) introduces a methodology to implement the contextual meaning of NL commands, and (3) recognizes machine-sensitive words from the running utterances which consist of both in-vocabulary and out-of-vocabulary words. The system achieves these capabilities through a FNN, which is used to interpret fuzzy linguistic information, a hidden Markov model-based key-word spotting system, which is used to identify machine-sensitive words among unrestricted user utterances, and a possible framework to insert the contextual meaning of words into the knowledge base employed in the fuzzy reasoning process. The system is a complete system integration which converts imprecise NL command inputs into their corresponding output signals in order to control a machine. The performance of the system specifications is examined by navigating a mobile robot in real time by unconditional speech utterances. More... »

PAGES

40-47

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02480884

DOI

http://dx.doi.org/10.1007/bf02480884

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044429339


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saga University", 
          "id": "https://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Faculty of Engineering Systems and Technology, Graduate School of Science and Engineering, Saga University, 1-Honjomachi, 840-8502, Saga, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pulasinghe", 
        "givenName": "K.", 
        "id": "sg:person.012777365774.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012777365774.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saga University", 
          "id": "https://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Department of Advanced Systems Control Engineering, Saga University, Saga, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "K.", 
        "id": "sg:person.015455032037.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455032037.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saga University", 
          "id": "https://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Department of Advanced Systems Control Engineering, Saga University, Saga, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiguchi", 
        "givenName": "K.", 
        "id": "sg:person.010020372111.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020372111.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saga University", 
          "id": "https://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Department of Advanced Systems Control Engineering, Saga University, Saga, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Izumi", 
        "givenName": "K.", 
        "id": "sg:person.01277760753.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277760753.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0967-0661(95)00042-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.364486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/91.660811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061247860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.1990.115555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086337679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iecon.2000.973133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094140967"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-03", 
    "datePublishedReg": "2003-03-01", 
    "description": "In this article, a fuzzy neural network (FNN)-based approach is presented to interpret imprecise natural language (NL) commands for controlling a machine. This system, (1) interprets fuzzy linguistic information in NL commands for machines, (2) introduces a methodology to implement the contextual meaning of NL commands, and (3) recognizes machine-sensitive words from the running utterances which consist of both in-vocabulary and out-of-vocabulary words. The system achieves these capabilities through a FNN, which is used to interpret fuzzy linguistic information, a hidden Markov model-based key-word spotting system, which is used to identify machine-sensitive words among unrestricted user utterances, and a possible framework to insert the contextual meaning of words into the knowledge base employed in the fuzzy reasoning process. The system is a complete system integration which converts imprecise NL command inputs into their corresponding output signals in order to control a machine. The performance of the system specifications is examined by navigating a mobile robot in real time by unconditional speech utterances.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02480884", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135365", 
        "issn": [
          "1433-5298", 
          "1614-7456"
        ], 
        "name": "Artificial Life and Robotics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Voice-controlled modular fuzzy neural controller with enhanced user autonomy", 
    "pagination": "40-47", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d3a220e4ab0bf89d4659aadfccef07b5ac20a51f2544edf14f87ec79d407bb4c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02480884"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044429339"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02480884", 
      "https://app.dimensions.ai/details/publication/pub.1044429339"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02480884"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02480884'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02480884'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02480884'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02480884'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02480884 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc7a381b84c8c493e9bcaa5c8131e0669
4 schema:citation https://doi.org/10.1016/0967-0661(95)00042-s
5 https://doi.org/10.1109/5.364486
6 https://doi.org/10.1109/91.660811
7 https://doi.org/10.1109/icassp.1990.115555
8 https://doi.org/10.1109/iecon.2000.973133
9 schema:datePublished 2003-03
10 schema:datePublishedReg 2003-03-01
11 schema:description In this article, a fuzzy neural network (FNN)-based approach is presented to interpret imprecise natural language (NL) commands for controlling a machine. This system, (1) interprets fuzzy linguistic information in NL commands for machines, (2) introduces a methodology to implement the contextual meaning of NL commands, and (3) recognizes machine-sensitive words from the running utterances which consist of both in-vocabulary and out-of-vocabulary words. The system achieves these capabilities through a FNN, which is used to interpret fuzzy linguistic information, a hidden Markov model-based key-word spotting system, which is used to identify machine-sensitive words among unrestricted user utterances, and a possible framework to insert the contextual meaning of words into the knowledge base employed in the fuzzy reasoning process. The system is a complete system integration which converts imprecise NL command inputs into their corresponding output signals in order to control a machine. The performance of the system specifications is examined by navigating a mobile robot in real time by unconditional speech utterances.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N6dd3ed9062c74ff0904a25e611bf3339
16 Nd9b0f2395ae94a518c5203d80b71bddb
17 sg:journal.1135365
18 schema:name Voice-controlled modular fuzzy neural controller with enhanced user autonomy
19 schema:pagination 40-47
20 schema:productId N35cf5d1171a7413aac2311d0ca62a4b3
21 N9393759235c540cbab06822e4475de7d
22 N93f717f0fb924f1bb764826af6db3f4f
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044429339
24 https://doi.org/10.1007/bf02480884
25 schema:sdDatePublished 2019-04-11T13:27
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N58aed0bd59d44469a5bd74a64be2a2a4
28 schema:url http://link.springer.com/10.1007%2FBF02480884
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N2b33f53c111a4d19abb42d6539aa745b rdf:first sg:person.010020372111.48
33 rdf:rest Na4d7ac0bdd74489788608c01c62de02e
34 N35cf5d1171a7413aac2311d0ca62a4b3 schema:name readcube_id
35 schema:value d3a220e4ab0bf89d4659aadfccef07b5ac20a51f2544edf14f87ec79d407bb4c
36 rdf:type schema:PropertyValue
37 N58aed0bd59d44469a5bd74a64be2a2a4 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N6dd3ed9062c74ff0904a25e611bf3339 schema:issueNumber 1-2
40 rdf:type schema:PublicationIssue
41 N80382229919a41dea774caf1cfb79ac4 rdf:first sg:person.015455032037.26
42 rdf:rest N2b33f53c111a4d19abb42d6539aa745b
43 N9393759235c540cbab06822e4475de7d schema:name dimensions_id
44 schema:value pub.1044429339
45 rdf:type schema:PropertyValue
46 N93f717f0fb924f1bb764826af6db3f4f schema:name doi
47 schema:value 10.1007/bf02480884
48 rdf:type schema:PropertyValue
49 Na4d7ac0bdd74489788608c01c62de02e rdf:first sg:person.01277760753.11
50 rdf:rest rdf:nil
51 Nc7a381b84c8c493e9bcaa5c8131e0669 rdf:first sg:person.012777365774.79
52 rdf:rest N80382229919a41dea774caf1cfb79ac4
53 Nd9b0f2395ae94a518c5203d80b71bddb schema:volumeNumber 7
54 rdf:type schema:PublicationVolume
55 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
56 schema:name Information and Computing Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
59 schema:name Artificial Intelligence and Image Processing
60 rdf:type schema:DefinedTerm
61 sg:journal.1135365 schema:issn 1433-5298
62 1614-7456
63 schema:name Artificial Life and Robotics
64 rdf:type schema:Periodical
65 sg:person.010020372111.48 schema:affiliation https://www.grid.ac/institutes/grid.412339.e
66 schema:familyName Kiguchi
67 schema:givenName K.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020372111.48
69 rdf:type schema:Person
70 sg:person.012777365774.79 schema:affiliation https://www.grid.ac/institutes/grid.412339.e
71 schema:familyName Pulasinghe
72 schema:givenName K.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012777365774.79
74 rdf:type schema:Person
75 sg:person.01277760753.11 schema:affiliation https://www.grid.ac/institutes/grid.412339.e
76 schema:familyName Izumi
77 schema:givenName K.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277760753.11
79 rdf:type schema:Person
80 sg:person.015455032037.26 schema:affiliation https://www.grid.ac/institutes/grid.412339.e
81 schema:familyName Watanabe
82 schema:givenName K.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455032037.26
84 rdf:type schema:Person
85 https://doi.org/10.1016/0967-0661(95)00042-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417907
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1109/5.364486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179336
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/91.660811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247860
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/icassp.1990.115555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086337679
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/iecon.2000.973133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094140967
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.412339.e schema:alternateName Saga University
96 schema:name Department of Advanced Systems Control Engineering, Saga University, Saga, Japan
97 Faculty of Engineering Systems and Technology, Graduate School of Science and Engineering, Saga University, 1-Honjomachi, 840-8502, Saga, Japan
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...