Interpolation, correlation identities, and inequalities for infinitely divisible variables View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-11

AUTHORS

Christian Houdré, Victor Pérez-Abreu, Donatas Surgailis

ABSTRACT

We present an interpolation formula for the expectation of functions of infinitely divisible (i.d.) variables. This is then applied to study the association problem for i.d. vectors and to present new covariance expansions and correlation inequalities.

PAGES

651-668

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02479672

DOI

http://dx.doi.org/10.1007/bf02479672

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014722690


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Southeast Applied Analysis Center, School of Mathematics, Georgia Institute of Technology, 30332, Atlanta, Georgia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Houdr\u00e9", 
        "givenName": "Christian", 
        "id": "sg:person.016602177075.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602177075.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematics Research Center", 
          "id": "https://www.grid.ac/institutes/grid.454267.6", 
          "name": [
            "Department of Probability and Statistics, Centro de Investigaci\u00f3n en Matem\u00e1ticas, A.C. Apdo. Postal 402, 36000, Guanajuato, Gto, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez-Abreu", 
        "givenName": "Victor", 
        "id": "sg:person.011433753327.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011433753327.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Mathematics and Informatics, Lithuanian Academy of Sciences, 2600, Vilnius, Lithuania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Surgailis", 
        "givenName": "Donatas", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01583788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003810586", 
          "https://doi.org/10.1007/bf01583788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4149(93)00017-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009649154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-7152(95)00096-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014842487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02213451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008640", 
          "https://doi.org/10.1007/bf02213451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02213451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008640", 
          "https://doi.org/10.1007/bf02213451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-7152(88)90034-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025814776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-7152(88)90034-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025814776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022654314791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026466636", 
          "https://doi.org/10.1023/a:1022654314791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-8474-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026713407", 
          "https://doi.org/10.1007/978-94-015-8474-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-8474-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026713407", 
          "https://doi.org/10.1007/978-94-015-8474-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176993872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035663408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1041005029", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0121-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041005029", 
          "https://doi.org/10.1007/978-1-4684-0121-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0121-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041005029", 
          "https://doi.org/10.1007/978-1-4684-0121-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02450283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046224443", 
          "https://doi.org/10.1007/bf02450283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02450283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046224443", 
          "https://doi.org/10.1007/bf02450283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-842x.1988.tb00481.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050180693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0117112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062838579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1022855422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064403040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176988392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064403540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176990646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064403971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176995808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064405329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/asens.1720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084408328"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-11", 
    "datePublishedReg": "1998-11-01", 
    "description": "We present an interpolation formula for the expectation of functions of infinitely divisible (i.d.) variables. This is then applied to study the association problem for i.d. vectors and to present new covariance expansions and correlation inequalities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02479672", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042645", 
        "issn": [
          "1069-5869", 
          "1531-5851"
        ], 
        "name": "Journal of Fourier Analysis and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Interpolation, correlation identities, and inequalities for infinitely divisible variables", 
    "pagination": "651-668", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "46246f4f66e8939ee6f4bcad616bd51e8512c4d1b470139b16cf74481986401d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02479672"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014722690"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02479672", 
      "https://app.dimensions.ai/details/publication/pub.1014722690"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02479672"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02479672'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02479672'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02479672'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02479672'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      20 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02479672 schema:author Nba84ae103fce4656b35c07e98223e996
2 schema:citation sg:pub.10.1007/978-1-4684-0121-9
3 sg:pub.10.1007/978-94-015-8474-6
4 sg:pub.10.1007/bf01583788
5 sg:pub.10.1007/bf02213451
6 sg:pub.10.1007/bf02450283
7 sg:pub.10.1023/a:1022654314791
8 https://app.dimensions.ai/details/publication/pub.1041005029
9 https://doi.org/10.1016/0167-7152(88)90034-x
10 https://doi.org/10.1016/0167-7152(95)00096-8
11 https://doi.org/10.1016/0304-4149(93)00017-a
12 https://doi.org/10.1111/j.1467-842x.1988.tb00481.x
13 https://doi.org/10.1137/0117112
14 https://doi.org/10.1214/aop/1022855422
15 https://doi.org/10.1214/aop/1176988392
16 https://doi.org/10.1214/aop/1176990646
17 https://doi.org/10.1214/aop/1176993872
18 https://doi.org/10.1214/aop/1176995808
19 https://doi.org/10.24033/asens.1720
20 schema:datePublished 1998-11
21 schema:datePublishedReg 1998-11-01
22 schema:description We present an interpolation formula for the expectation of functions of infinitely divisible (i.d.) variables. This is then applied to study the association problem for i.d. vectors and to present new covariance expansions and correlation inequalities.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N5f8999764bca402dbb06b5ae6debafcb
27 Need7210b0b9746fc80c8564817761028
28 sg:journal.1042645
29 schema:name Interpolation, correlation identities, and inequalities for infinitely divisible variables
30 schema:pagination 651-668
31 schema:productId N6b93326aed734ba39335eca683110a39
32 N985ad6d3934b4d5a868a010cbf5aa4f1
33 Nbc9f138008584745b8444e69428229ff
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014722690
35 https://doi.org/10.1007/bf02479672
36 schema:sdDatePublished 2019-04-11T13:32
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N3d0fbe9b535d40008df5ba0b5dbc451c
39 schema:url http://link.springer.com/10.1007%2FBF02479672
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N15e675f9c0794365ba60eccc76bae777 rdf:first sg:person.011433753327.87
44 rdf:rest N4d1305a3f5a446c0bbbe94587a21930d
45 N3d0fbe9b535d40008df5ba0b5dbc451c schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N4218868bbf4d41c99c8b3dd647e976c3 schema:affiliation Nea6d66d604da4392ae56009bed8462cf
48 schema:familyName Surgailis
49 schema:givenName Donatas
50 rdf:type schema:Person
51 N4d1305a3f5a446c0bbbe94587a21930d rdf:first N4218868bbf4d41c99c8b3dd647e976c3
52 rdf:rest rdf:nil
53 N5f8999764bca402dbb06b5ae6debafcb schema:volumeNumber 4
54 rdf:type schema:PublicationVolume
55 N6b93326aed734ba39335eca683110a39 schema:name dimensions_id
56 schema:value pub.1014722690
57 rdf:type schema:PropertyValue
58 N985ad6d3934b4d5a868a010cbf5aa4f1 schema:name doi
59 schema:value 10.1007/bf02479672
60 rdf:type schema:PropertyValue
61 Nba84ae103fce4656b35c07e98223e996 rdf:first sg:person.016602177075.34
62 rdf:rest N15e675f9c0794365ba60eccc76bae777
63 Nbc9f138008584745b8444e69428229ff schema:name readcube_id
64 schema:value 46246f4f66e8939ee6f4bcad616bd51e8512c4d1b470139b16cf74481986401d
65 rdf:type schema:PropertyValue
66 Nea6d66d604da4392ae56009bed8462cf schema:name Institute of Mathematics and Informatics, Lithuanian Academy of Sciences, 2600, Vilnius, Lithuania
67 rdf:type schema:Organization
68 Need7210b0b9746fc80c8564817761028 schema:issueNumber 6
69 rdf:type schema:PublicationIssue
70 sg:journal.1042645 schema:issn 1069-5869
71 1531-5851
72 schema:name Journal of Fourier Analysis and Applications
73 rdf:type schema:Periodical
74 sg:person.011433753327.87 schema:affiliation https://www.grid.ac/institutes/grid.454267.6
75 schema:familyName Pérez-Abreu
76 schema:givenName Victor
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011433753327.87
78 rdf:type schema:Person
79 sg:person.016602177075.34 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
80 schema:familyName Houdré
81 schema:givenName Christian
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602177075.34
83 rdf:type schema:Person
84 sg:pub.10.1007/978-1-4684-0121-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041005029
85 https://doi.org/10.1007/978-1-4684-0121-9
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-94-015-8474-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026713407
88 https://doi.org/10.1007/978-94-015-8474-6
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01583788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003810586
91 https://doi.org/10.1007/bf01583788
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02213451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008640
94 https://doi.org/10.1007/bf02213451
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf02450283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046224443
97 https://doi.org/10.1007/bf02450283
98 rdf:type schema:CreativeWork
99 sg:pub.10.1023/a:1022654314791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026466636
100 https://doi.org/10.1023/a:1022654314791
101 rdf:type schema:CreativeWork
102 https://app.dimensions.ai/details/publication/pub.1041005029 schema:CreativeWork
103 https://doi.org/10.1016/0167-7152(88)90034-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025814776
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0167-7152(95)00096-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014842487
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0304-4149(93)00017-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1009649154
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1111/j.1467-842x.1988.tb00481.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050180693
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1137/0117112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062838579
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1214/aop/1022855422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064403040
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1214/aop/1176988392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064403540
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1214/aop/1176990646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064403971
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1214/aop/1176993872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035663408
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1214/aop/1176995808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405329
122 rdf:type schema:CreativeWork
123 https://doi.org/10.24033/asens.1720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084408328
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
126 schema:name Southeast Applied Analysis Center, School of Mathematics, Georgia Institute of Technology, 30332, Atlanta, Georgia
127 rdf:type schema:Organization
128 https://www.grid.ac/institutes/grid.454267.6 schema:alternateName Mathematics Research Center
129 schema:name Department of Probability and Statistics, Centro de Investigación en Matemáticas, A.C. Apdo. Postal 402, 36000, Guanajuato, Gto, Mexico
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...