Contribution to the theory of random and biased nets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1957-12

AUTHORS

Anatol Rapoport

ABSTRACT

The probabilistic theory of random and biased nets is further developed by the “tracing” method treated previously. A number of biases expected to be operating in nets, particularly in sociograms, is described. Distribution of closed chain lengths is derived for random nets and for nets with a simple “reflexive” bias. The “island model” bias is treated for the case of two islands and a single axon tracing, resulting in a pair of linear difference equations with two indices. The reflexive bias is extended to multiple-axon tracing by an approximate method resulting in a modification of the random net recursion formula. Results previously obtained are compared with empirical findings and attempts are made to account for observed discrepancies. More... »

PAGES

257-277

References to SciGraph publications

  • 1947-06. A matrix calculus for neural nets: II in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1953-12. Spread of information through a population with socio-structural bias: I. Assumption of transitivity in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1951-06. The probability distribution of distinct hits on closely packed targets in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1951-06. Nets with distance bias in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1955-06. Some theorems in topology and a possible biological implication in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1951-06. Connectivity of random nets in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1950-06. Connectivity and generalized cliques in sociometric group structure in PSYCHOMETRIKA
  • 1953-12. Spread of information through a population with socio-structural bias: II. Various models with partial transitivity in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1952-06. On some problems of random nets in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1948-09. An analysis of theoretical systems of differentiating nervous tissue in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1946-06. Outline of a matrix calculus for neural nets in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1949-06. A method of matrix analysis of group structure in PSYCHOMETRIKA
  • 1954-12. Topology and life: In search of general mathematical principles in biology and sociology in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1948-09. Cycle distributions in random nets in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1956-09. On the information content of graphs: Compound symbols; Different states for each point in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1956-03. The geometrization of biology in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1955-09. Some remarks on topological biology in BULLETIN OF MATHEMATICAL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02478417

    DOI

    http://dx.doi.org/10.1007/bf02478417

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039806281


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Mental Health Research Institute, University of Michigan, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rapoport", 
            "givenName": "Anatol", 
            "id": "sg:person.015365665421.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365665421.71"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02477858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000340195", 
              "https://doi.org/10.1007/bf02477858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02477858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000340195", 
              "https://doi.org/10.1007/bf02477858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02477719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000357541", 
              "https://doi.org/10.1007/bf02477719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02477719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000357541", 
              "https://doi.org/10.1007/bf02477719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002087008", 
              "https://doi.org/10.1007/bf02478355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002087008", 
              "https://doi.org/10.1007/bf02478355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004994138", 
              "https://doi.org/10.1007/bf02478296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004994138", 
              "https://doi.org/10.1007/bf02478296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02289146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007821145", 
              "https://doi.org/10.1007/bf02289146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008520334", 
              "https://doi.org/10.1007/bf02478359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008520334", 
              "https://doi.org/10.1007/bf02478359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/h0046049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014768888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02484495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015226835", 
              "https://doi.org/10.1007/bf02484495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02484495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015226835", 
              "https://doi.org/10.1007/bf02484495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02477488", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019173933", 
              "https://doi.org/10.1007/bf02477488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02477488", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019173933", 
              "https://doi.org/10.1007/bf02477488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02477842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019872171", 
              "https://doi.org/10.1007/bf02477842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02477842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019872171", 
              "https://doi.org/10.1007/bf02477842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02476440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034601743", 
              "https://doi.org/10.1007/bf02476440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02476440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034601743", 
              "https://doi.org/10.1007/bf02476440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9939-1954-0062697-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035345743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02477489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037702755", 
              "https://doi.org/10.1007/bf02477489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02477489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037702755", 
              "https://doi.org/10.1007/bf02477489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02289199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041252991", 
              "https://doi.org/10.1007/bf02289199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02289199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041252991", 
              "https://doi.org/10.1007/bf02289199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042467550", 
              "https://doi.org/10.1007/bf02478464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042467550", 
              "https://doi.org/10.1007/bf02478464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02481859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044307436", 
              "https://doi.org/10.1007/bf02481859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02481859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044307436", 
              "https://doi.org/10.1007/bf02481859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047700228", 
              "https://doi.org/10.1007/bf02478357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047700228", 
              "https://doi.org/10.1007/bf02478357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02477989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049499164", 
              "https://doi.org/10.1007/bf02477989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02477989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049499164", 
              "https://doi.org/10.1007/bf02477989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02476441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051413119", 
              "https://doi.org/10.1007/bf02476441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02476441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051413119", 
              "https://doi.org/10.1007/bf02476441"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1957-12", 
        "datePublishedReg": "1957-12-01", 
        "description": "The probabilistic theory of random and biased nets is further developed by the \u201ctracing\u201d method treated previously. A number of biases expected to be operating in nets, particularly in sociograms, is described. Distribution of closed chain lengths is derived for random nets and for nets with a simple \u201creflexive\u201d bias. The \u201cisland model\u201d bias is treated for the case of two islands and a single axon tracing, resulting in a pair of linear difference equations with two indices. The reflexive bias is extended to multiple-axon tracing by an approximate method resulting in a modification of the random net recursion formula. Results previously obtained are compared with empirical findings and attempts are made to account for observed discrepancies.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02478417", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018370", 
            "issn": [
              "0092-8240", 
              "1522-9602"
            ], 
            "name": "Bulletin of Mathematical Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "Contribution to the theory of random and biased nets", 
        "pagination": "257-277", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bd9ea0fcb7a9f85ebe02d91bf2f325362c752dba29d4c357d472cf972de191cb"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02478417"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039806281"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02478417", 
          "https://app.dimensions.ai/details/publication/pub.1039806281"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02478417"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02478417'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02478417'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02478417'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02478417'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02478417 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N2a6aa0e772d44e63a994bdd9e3b49449
    4 schema:citation sg:pub.10.1007/bf02289146
    5 sg:pub.10.1007/bf02289199
    6 sg:pub.10.1007/bf02476440
    7 sg:pub.10.1007/bf02476441
    8 sg:pub.10.1007/bf02477488
    9 sg:pub.10.1007/bf02477489
    10 sg:pub.10.1007/bf02477719
    11 sg:pub.10.1007/bf02477842
    12 sg:pub.10.1007/bf02477858
    13 sg:pub.10.1007/bf02477989
    14 sg:pub.10.1007/bf02478296
    15 sg:pub.10.1007/bf02478355
    16 sg:pub.10.1007/bf02478357
    17 sg:pub.10.1007/bf02478359
    18 sg:pub.10.1007/bf02478464
    19 sg:pub.10.1007/bf02481859
    20 sg:pub.10.1007/bf02484495
    21 https://doi.org/10.1037/h0046049
    22 https://doi.org/10.1090/s0002-9939-1954-0062697-x
    23 schema:datePublished 1957-12
    24 schema:datePublishedReg 1957-12-01
    25 schema:description The probabilistic theory of random and biased nets is further developed by the “tracing” method treated previously. A number of biases expected to be operating in nets, particularly in sociograms, is described. Distribution of closed chain lengths is derived for random nets and for nets with a simple “reflexive” bias. The “island model” bias is treated for the case of two islands and a single axon tracing, resulting in a pair of linear difference equations with two indices. The reflexive bias is extended to multiple-axon tracing by an approximate method resulting in a modification of the random net recursion formula. Results previously obtained are compared with empirical findings and attempts are made to account for observed discrepancies.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf Na4d0b3620a1a44eeb56bb6859249420d
    30 Nd46127dee7ef405ebc34329aae3e34c6
    31 sg:journal.1018370
    32 schema:name Contribution to the theory of random and biased nets
    33 schema:pagination 257-277
    34 schema:productId N0f740c43f75c47ad829e071cbea0013e
    35 N876d140f66df4e81a692d47eaedda925
    36 Ndf752909b855408ebda6fef2095e2467
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039806281
    38 https://doi.org/10.1007/bf02478417
    39 schema:sdDatePublished 2019-04-11T13:29
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Nf70c7c1938bc4321ade0635899caedc2
    42 schema:url http://link.springer.com/10.1007%2FBF02478417
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N0f740c43f75c47ad829e071cbea0013e schema:name readcube_id
    47 schema:value bd9ea0fcb7a9f85ebe02d91bf2f325362c752dba29d4c357d472cf972de191cb
    48 rdf:type schema:PropertyValue
    49 N16e39ed5ab404b999640e05c84879bde schema:name Mental Health Research Institute, University of Michigan, USA
    50 rdf:type schema:Organization
    51 N2a6aa0e772d44e63a994bdd9e3b49449 rdf:first sg:person.015365665421.71
    52 rdf:rest rdf:nil
    53 N876d140f66df4e81a692d47eaedda925 schema:name dimensions_id
    54 schema:value pub.1039806281
    55 rdf:type schema:PropertyValue
    56 Na4d0b3620a1a44eeb56bb6859249420d schema:issueNumber 4
    57 rdf:type schema:PublicationIssue
    58 Nd46127dee7ef405ebc34329aae3e34c6 schema:volumeNumber 19
    59 rdf:type schema:PublicationVolume
    60 Ndf752909b855408ebda6fef2095e2467 schema:name doi
    61 schema:value 10.1007/bf02478417
    62 rdf:type schema:PropertyValue
    63 Nf70c7c1938bc4321ade0635899caedc2 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Mathematical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Statistics
    70 rdf:type schema:DefinedTerm
    71 sg:journal.1018370 schema:issn 0092-8240
    72 1522-9602
    73 schema:name Bulletin of Mathematical Biology
    74 rdf:type schema:Periodical
    75 sg:person.015365665421.71 schema:affiliation N16e39ed5ab404b999640e05c84879bde
    76 schema:familyName Rapoport
    77 schema:givenName Anatol
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365665421.71
    79 rdf:type schema:Person
    80 sg:pub.10.1007/bf02289146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007821145
    81 https://doi.org/10.1007/bf02289146
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf02289199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041252991
    84 https://doi.org/10.1007/bf02289199
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/bf02476440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034601743
    87 https://doi.org/10.1007/bf02476440
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/bf02476441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051413119
    90 https://doi.org/10.1007/bf02476441
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf02477488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019173933
    93 https://doi.org/10.1007/bf02477488
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/bf02477489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037702755
    96 https://doi.org/10.1007/bf02477489
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf02477719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000357541
    99 https://doi.org/10.1007/bf02477719
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf02477842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019872171
    102 https://doi.org/10.1007/bf02477842
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf02477858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000340195
    105 https://doi.org/10.1007/bf02477858
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf02477989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049499164
    108 https://doi.org/10.1007/bf02477989
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf02478296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004994138
    111 https://doi.org/10.1007/bf02478296
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf02478355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002087008
    114 https://doi.org/10.1007/bf02478355
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf02478357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047700228
    117 https://doi.org/10.1007/bf02478357
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/bf02478359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008520334
    120 https://doi.org/10.1007/bf02478359
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/bf02478464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042467550
    123 https://doi.org/10.1007/bf02478464
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/bf02481859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044307436
    126 https://doi.org/10.1007/bf02481859
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf02484495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015226835
    129 https://doi.org/10.1007/bf02484495
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1037/h0046049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014768888
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1090/s0002-9939-1954-0062697-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035345743
    134 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...