Connectivity of random nets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1951-06

AUTHORS

Ray Solomonoff, Anatol Rapoport

ABSTRACT

The weak connectivity γ of a random net is defined and computed by an approximation method as a function ofa, the axone density. It is shown that γ rises rapidly witha, attaining 0.8 of its asymptotic value (unity) fora=2, where the number of neurons in the net is arbitrarily large. The significance of this parameter is interpreted also in terms of the maximum expected spread of an epidemic under certain conditions. More... »

PAGES

107-117

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02478357

DOI

http://dx.doi.org/10.1007/bf02478357

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047700228


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Physics and Committee on Mathematical Biology, The University of Chicago, Chicago, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solomonoff", 
        "givenName": "Ray", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics and Committee on Mathematical Biology, The University of Chicago, Chicago, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rapoport", 
        "givenName": "Anatol", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02477489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037702755", 
          "https://doi.org/10.1007/bf02477489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02477489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037702755", 
          "https://doi.org/10.1007/bf02477489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02478324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045338218", 
          "https://doi.org/10.1007/bf02478324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02478324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045338218", 
          "https://doi.org/10.1007/bf02478324"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1951-06", 
    "datePublishedReg": "1951-06-01", 
    "description": "The weak connectivity \u03b3 of a random net is defined and computed by an approximation method as a function ofa, the axone density. It is shown that \u03b3 rises rapidly witha, attaining 0.8 of its asymptotic value (unity) fora=2, where the number of neurons in the net is arbitrarily large. The significance of this parameter is interpreted also in terms of the maximum expected spread of an epidemic under certain conditions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02478357", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Connectivity of random nets", 
    "pagination": "107-117", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e33b4f3697e419480589d9e4bb7fd25c0f3337a16b728d05614289ffd4ae6ece"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02478357"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047700228"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02478357", 
      "https://app.dimensions.ai/details/publication/pub.1047700228"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46766_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02478357"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02478357'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02478357'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02478357'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02478357'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02478357 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Na8aaa5e0d37d48e99ff1b993eeb874e1
4 schema:citation sg:pub.10.1007/bf02477489
5 sg:pub.10.1007/bf02478324
6 schema:datePublished 1951-06
7 schema:datePublishedReg 1951-06-01
8 schema:description The weak connectivity γ of a random net is defined and computed by an approximation method as a function ofa, the axone density. It is shown that γ rises rapidly witha, attaining 0.8 of its asymptotic value (unity) fora=2, where the number of neurons in the net is arbitrarily large. The significance of this parameter is interpreted also in terms of the maximum expected spread of an epidemic under certain conditions.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N72990b802377482c8d40de247dc5bcc6
13 Na26c6624d2b247f1ba7d9ded87a3240e
14 sg:journal.1018370
15 schema:name Connectivity of random nets
16 schema:pagination 107-117
17 schema:productId N9cfac54286f74e0bb926090d0a7a1e46
18 Ndd09cf8d9dac4949bf8f27c3bd16d4fd
19 Nf99e985c46e24931acff9615b8990917
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047700228
21 https://doi.org/10.1007/bf02478357
22 schema:sdDatePublished 2019-04-11T13:33
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Na57c0773a37f4bb9b34a917584d6b629
25 schema:url http://link.springer.com/10.1007%2FBF02478357
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N38ff7b75e7ab4f538ad348899bde64a4 schema:name Department of Physics and Committee on Mathematical Biology, The University of Chicago, Chicago, USA
30 rdf:type schema:Organization
31 N72990b802377482c8d40de247dc5bcc6 schema:issueNumber 2
32 rdf:type schema:PublicationIssue
33 N8999fd2b059548ff8c7d9dcd9aa9c6e5 schema:name Department of Physics and Committee on Mathematical Biology, The University of Chicago, Chicago, USA
34 rdf:type schema:Organization
35 N9cfac54286f74e0bb926090d0a7a1e46 schema:name readcube_id
36 schema:value e33b4f3697e419480589d9e4bb7fd25c0f3337a16b728d05614289ffd4ae6ece
37 rdf:type schema:PropertyValue
38 Na26c6624d2b247f1ba7d9ded87a3240e schema:volumeNumber 13
39 rdf:type schema:PublicationVolume
40 Na57c0773a37f4bb9b34a917584d6b629 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Na8aaa5e0d37d48e99ff1b993eeb874e1 rdf:first Nda4fa1fe8ebb4b938c8a699fd0ed378a
43 rdf:rest Ne5617cd62aac4657981cbc2194dba16c
44 Nc29a754c8ee44991bb25fdbc3aa0c5c4 schema:affiliation N8999fd2b059548ff8c7d9dcd9aa9c6e5
45 schema:familyName Rapoport
46 schema:givenName Anatol
47 rdf:type schema:Person
48 Nda4fa1fe8ebb4b938c8a699fd0ed378a schema:affiliation N38ff7b75e7ab4f538ad348899bde64a4
49 schema:familyName Solomonoff
50 schema:givenName Ray
51 rdf:type schema:Person
52 Ndd09cf8d9dac4949bf8f27c3bd16d4fd schema:name doi
53 schema:value 10.1007/bf02478357
54 rdf:type schema:PropertyValue
55 Ne5617cd62aac4657981cbc2194dba16c rdf:first Nc29a754c8ee44991bb25fdbc3aa0c5c4
56 rdf:rest rdf:nil
57 Nf99e985c46e24931acff9615b8990917 schema:name dimensions_id
58 schema:value pub.1047700228
59 rdf:type schema:PropertyValue
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
64 schema:name Statistics
65 rdf:type schema:DefinedTerm
66 sg:journal.1018370 schema:issn 0092-8240
67 1522-9602
68 schema:name Bulletin of Mathematical Biology
69 rdf:type schema:Periodical
70 sg:pub.10.1007/bf02477489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037702755
71 https://doi.org/10.1007/bf02477489
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf02478324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045338218
74 https://doi.org/10.1007/bf02478324
75 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...